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Abstract

This presentation describes the state of transonic flow simulation using nonlinear potential methods for external-
aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis
on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation
assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave
capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations,
including steady, unsteady. space marching, and design methods, are described. Both spatial discretization and iteration

scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout

the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommenda-
tions for future work. Overall, nonlinear potential solvers are efficient. highly developed and routinely used in the
aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past three decades the field of computational
aerodynamics has evolved from a curious art barely
capable of predicting the inviscid flow over simple two-
dimensional shapes, such as airfoils, to the relatively
mature current capability, which is capable of predicting
high-Reynolds-number viscous flows about complex
three-dimensional shapes, including nearly complete air-
craft. The development of this scientific/engineering field
has been paced by many milestones in a variety of areas,
including computational hardware, system software,
computing environments, numerical algorithms, com-
puter graphics, geometric modeling, flow solver algo-
rithms, etc. Indeed, many volumes could be written in
describing the development of computational aerody-
namics. The purpose of this review is to describe a small,
and vet very important aspect of computational aerody-
namics, that portion associated with nonlinear potential
formulations. This area is important because numerical
simulations based on nonlinear potential equations pro-
vide quantitative answers to aerodynamic questions in
a small amount of wall clock time. For aircraft design,
reducing wall clock time is vitally important because it
means lower development costs and rapid product avail-
ability, which both contribute to larger market share.

Potential equation numerical simulations are com-
putationally efficient because they involve the solution of
a simple scalar equation. The more complete formula-
tions of computational fluid dynamics (CFD), the
Navier-Stokes and Euler equations, consist of five
coupled equations. In addition. numerical iteration
schemes for solving the potential equations typically con-
verge in fewer iterations than iteration schemes for the
Euler or Navier-Stokes equations. Thus, potential sol-
vers are typically an order of magnitude (or more} faster
than Euler equation solvers on comparable grids [3].
The price for this extraordinary speed is limitation of
application. All potential formulations are inherently ir-
rotational and isentropic. These assumptions are gener-
ally consistent with subsonic, transonic and supersonic
flows at or near cruise conditions providing all shock
waves are weak. If strong shock waves exist in the flow
field, i.e., shocks with an upstream, normal-shock Mach
number component at or above about 1.3, then the full
potential solution will be in error: the stronger the shock
wave, the larger the error. A major ameliorating charac-
teristic of this situation is that for cruise conditions (asso-
ciated with the transonic flow regime), the existence of
strong shock waves is a very undesirable characteristic. If
a candidate configuration has a strong shock wave, a nu-
merical result does not have to be very accurate to
eliminate it from further consideration in the design
process. Ideally, as the configuration is refined, the shock
strength is reduced and the full potential equation accu-
racy is improved. This is why the full potential formula-

w

tion is used so much in aerodynamic shape design for
transonic cruise conditions.

The main emphasis of this review is to describe numer-
ical solution techniques for solving transonic flow prob-
lems governed by the full potential equation. Because
algorithms for solving the transonic small disturbance
(TSD) potential equation are very similar in nature, this
topic is covered as well, but in less detail. In a general
sense, this presentation deals with relaxation schemes
suitable for the numerical solution of elliptic partial dif-
ferential equations. Of course, transonic flow is not pure-
ly elliptic in nature, but consists of hyperbolic regions
embedded in an otherwise elliptic domain. However, the
most successful numerical methods of solution for trans-
onic flow applications, at Jeast for potential formulations,
have evolved from classical relaxation schemes asso-
ciated with elliptic equations. Thus, most of the algo-
rithms presented herein will have an elliptic-equation,
relaxation-algorithm flavor.

The transonic flow regime provides the most efficient
aircraft cruise performance; hence, most large commer-
cial aircraft cruise in this regime. However, transonic flow
fields tend to be sensitive to small perturbations in flow
conditions or to slight changes in geometrical character-
istics, either of which can cause Jarge variations in the
flow field. Large performance penalties can result be-
cause of relatively small perturbations away from desired
design conditions. Computational techniques, therefore,
have enjoyed an increasing role in helping the acrody-
namics engineer find optimal design conditions, as well
as to evaluate design sensitivity. For more information
on how CFD methods, in general, are being used in (and
have benefited) the aircraft design environment, the inter-
ested reader is referred to Rubbert [4].

Transonic flow fields contain a variety of interesting
and unique characteristics. Typical airfoil and swept-
wing flow fields are shown in Figs. 1 and 2. The outer
freestreamn flow is typically subsonic and elliptic in na-
ture. Regions of supersonic flow usually exist on the
upper airfoil or wing surface and are generally termin-
ated by a weak “transonic” shock wave. For the case of
a swept-wing flow field, the shock wave may actually
consist of a system of shocks, as shown in Fig. 2. The
first shock is swept and therefore has a supersonic
downstream Mach number. The aft shock is approxim-
ately normal to the local flow and therefore has a
subsonic downstream Mach number. Signals tend to
propagate very rapidly downstream in transonic flow
fields where the propagation speed is u + a (local flow
speed plus speed of sound) and very slowly upstream
where the propagation speed is u — a. For a downstream
disturbance to propagate upstream it must move around
the supersonic zone, further increasing the difference
between the upstream and downstream propagation
speeds. This situation tends to make transonic
numerical solution technigues, which depend on
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Fig. 1. Mach number contours about an airfoil showing a typi-
cal two-dimensional transonic, inviscid flow field computed us-
ing a full potential algorithm.

Fig. 2. Mach number contours on the upper surface of a swept

wing showing a typical three-dimensional transonic, inviscid
flow field computed using a full potential algorithm.

physical-time-dependent algorithms, very slow (relative
to similar algorithms for subsonic or supersonic flow
problems). Such problems are said to be “stiff,” and
require larger amounts of computer time.

Another characteristic of transonic flow is that 1t is
governed by equations that are inherently nonlinear.
Linearization of these equations will remove the vital
flow field physics, which is responsible for the prediction
of shock waves. In contrast, inviscid subsonic flow can be
linearized with good accuracy. The result 1s Laplace’s
equation (or a relative thereof). which can be solved using
a direct method, ie., a method without iteration. The
inherent nonlinear behavior of transonic flow problems
means that a direct solution is impossible. Thus, one
basic feature associated with all transonic-flow numerical
schemes 1s that thev must be iterative.

Viscous effects are also extremely important in trans-
onic flows. This complex subject involves four major
effects: (1) shock/boundary layer interaction effects,
(2) the decambering and thickness effects caused by the
addition of a simple displacement thickness, (3} trailing-
edge effects, and (4) near-wake effects. Although a dis-
cussion of viscous correction procedures is not within the
scope of this review, an ample number of references are
presented for those potential solvers that have viscous
correction procedures included.

This review begins with a discussion of the various
nonlinear potential formulations that have been utilized
in the field of computational transonic aerodynamics
over the past two or three decades (chapter 2). Formula-
tion assumptions and limitations, nonconservative ver-
sus conservative forms, shock capturing capabilities and
nonuniqueness issues are discussed in detail in this chap-
ter. Next, in chapter 3, the presentation continues with
a review of past and present research activities involving
algorithm development and aerodynamic applications
with primary emphasis on the full potential formulation.
This chapter includes the milestone achievements that
have shaped the current state of the art in transonic
potential methods. Solution methods reviewed include
classical relaxation algorithms, time-accurate schemes,
supersonic space marching schemes and design methods.
Numerical result examples are included throughout
chapter 3 to highlight important discussion points. The
presentation ends with concluding remarks {(chapter 4)
and recommendations for future work (chapter 3).

Many additional review papers on this and other re-
lated topics are available. A few of these include Hall [5]
and South [6] where a historical development of the
potential formulation in computational aerodynamics is
presented; Holst et al. [7] Kordulla [§] and Nixon and
Kerlick [9] where a variety of transonic potential flow
simulation surveys are presented; and the collected pa-
pers in Nixon [10] Caughey and Hafez [11] Zierep and
Oertel [12] Habashi [13] and Henne [14] where
a wealth of information about the more general topics of
computational aerodynamics and transonic aerodynam-
ics are presented. Finally, additional basic information
about numerical solution algorithms for nonlinear po-
tential formulations is available in Hirsch [15] Anderson
et al. [16] and Pai and Luo [17].

2. Nonlinear potential governing equations
2.1. General

There are several different potential equation formula-
tions used in aerodynamic simulations. Although this
presentation deals primarily with the full or exact velo-
city potential formulation, it is of interest to review all
potential formulations to establish differences and
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similarities. All potential flow formulations are based on
the ability to define a velocity potential, which requires
an irrotational flow assumption. Thus, for a velocity
vector field defined by g, the requirement for a velocity
potential to exist is

Vxg=0. (1)

If this condition holds in all locations of the flow field of
interest, then a full or exact velocity potential function
¢ exists and is defined by

Vo =q. (2)

Velocity components can be expressed in terms of partial
derivatives of the velocity potential function. For Car-
tesian coordinates this is given as

Po=q=ui+uvj+wk=ddi+dj+d:k
or component by component as

(ﬁ.\' = U, d)} =1, d): =W,

where i, j and k are the standard unit vectors in the x,
y and z directions, respectively; and u, v and w are the
Cartesian velocity vector components, also along the x,
y and z directions, respectively. In the above expressions,
the quantity ¢, (for example) is used to indicate a partial
derivative of ¢ with respect to the spatial coordinaté x.

The velocity potential function has a spatial variation
which is independent of path. It can be defined for incom-
pressible or compressible flows that are either steady or
unsteady. It is restricted, however, because of the irrota-
tional-flow assumption, to flows without viscous effects,
i.e.. potential flows are inherently inviscid in nature. Of
course, viscous boundary layer corrections can be in-
cluded quite easily (at least for attached flows) by solving
a potential formulation in conjunction with the bound-
ary layer equations, but this is beyond the scope of this
presentation and will not be discussed further. Other
types of rotational flow corrections can be included. e.g.,
flows with circulation and/or vortices, but this requires
additional {often empirical) modeling. More on circula-
tion modeling will be presented in the section on bound-
ary conditions. Next, the discussion turns to the various
governing equation forms that utilize a velocity potential
function.

2.2, Full or exact potential equation

The most general form of the full potential equation is
derived from the mass continuity equation using the
definition of the velocity potential given above [Eq. (2}].
This equation, written in integral form, is given by

i( pdQ + || nopVéds =0, (3)
JJs

cr tlle

where t is the physical time coordinate, p is the fluid
density, Q2 is an arbitrary closed control volume, § is the
boundary surface surrounding €, and n is the unit out-
ward normal vector to the surface S. Eg. (3) states that
the time rate of change of the mass in an arbitrary fixed
volume (first term) is balanced by the net outflow of mass
leaving the same volume (second term). In order for Eq.
{3) to represent a closed-form description of a flow field,
an algebraic expression for the density in terms of the
velocity potential must be utilized. Several forms of this
expression will be discussed shortly.

Eq. (3) can be expressed in differential form by trans-
forming the surface integral term into a volume integral
using Gauss' Divergence Theorem:

JLn'de) ds = J"JFL V- p Vo dQ.

Using the fact that the control volume & is fixed with
respect to time, the differentiation and integration asso-
ciated with the first term of Eq. (3) can be interchanged.
Combining the two volume integrals into the same term,
Eq. (3) becomes

m (2~ 7pve |4 = 0.
o\ Ct

Since the control volume is arbitrary, the integrand in
the above equation vanishes everywhere, which results in
the desired differential form of the unsteady full potential
equation.

é
Tfr—) + VpVp =0 (4)
¢

The above integral and differential forms of the full
potential equation still need an additional relation to
complete the formulation. In particular, a relation that
expresses the fluid density p as a function of the velocity
components ¢, ¢, and ¢., is required. A suitable ap-
proach for this derivation starts with the inviscid mo-
mentum equation given by (this is actually a form of the
Euler momentum equation)

. PP

ot p

where p is the fluid pressure. The second term in the
above equation can be reduced to a convenient form
using the Lagrange acceleration formula [18] given by

Dq dq qzj ,
299 (L) —gx(vxq.
Dt 5r+ <” e (Vxq

where g in the second term on the right-hand side repres-
ents the magnitude of the velocity vector. The D/Dr
notation used on the left-hand side stands for the
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material or substantial derivative defined by

Dg _dq
i I, P
Dt ot T
For irrotational fluids the following equation is easily
obtained
"

Using this relation the momentum equation becomes

0.

aq ,(/612\‘) n Vp =
ct \ < I
Substituting Vg for q and using the fact that
r
d %
V\ _
e p

for a barotropic fluid” vields

/C.‘(D ﬁdp q:'
F( - + ’ — +—=1i=0

) 2
The integration of this expression along an arbitrary line
in the flow domain vields

o) N l dp -
at

where C(1) is a constant of integration that in general is
a function of time but not space. Eq. (5) is the unsteady
Bernoulli equation. It and various related forms of
the Bernoulli equation are used in many areas of fiuid
dynamics.

The integral in the unsteady Bernoulli equation must
be evaluated before this equation can be used further.
This is accomplished using

L_ const, (6)
{

where 7 is the ratio of specific heats (equal to 1.40 for air)
and “const” is a constant that can be evaluated when
a nondimensionalization is chosen. Eq. (6) is the standard
density-pressure relationship for an isentropic flow. With
this relation the integral in Eq. (3) can easily be evaluated
yielding

[dp_ ;op @
p—j'—lp »=1

.

where « is the fluid speed of sound. The last equality in
the above equation is obtained using the perfect gas

* A barotropic fluid is one in which the density can be ex-
pressed solely as a function of pressure, ie. p = p(p). For
example, a fluid undergoing an isentropic process is a barotropic
fluid.

speed of sound definition. Thus, the final form of the
integrated unsteady Bernoulli equation is given by

0 at
d)+

oy =1

+L -, 7)

The ultimate goal of this derivation is obtaining a rela-
tionship between the fluid density and derivatives of the
velocity potential, i.e., the fluid's velocity components,
thus allowing closure of the full potential equations given
above by Egs. (3) or (4). This is accomplished using
Eq. (7), the speed of sound definition, and the isentropic
density-pressure relation [Eq. (6)], yielding the final de-
sired relation

~
“~

5 =1 T
;»=[1+' (Mi—z¢,~¢z—¢3~¢s>] |
(8)

In this equation the density p and the velocity compo-
nents ¢,, ¢, and ¢. are nondimensionalized by the
freestream values of the density p., and the freestream
value of the speed of sound a,, respectively. The Car-
tesian coordinates x, y and z and the time t are non-
dimensionalized by a characteristic length, usually the
airfoil or wing chord ¢ and the quantity a,, /c, respect-
ively.

Several other forms of the full potential equation with
different types of nondimensionalization have been used
for numerical computations. For example, the steady
flow version of the differential form of the full potential
equation in which the density is nondimensionalized by
the stagnation density pg.,, and all velocity components
are nondimensionalized by the critical speed of sound
a* 1s given by

(PO + (pdy), + (pd.). =0, (9)

v -1 G- 10
=11 -1 (2 2 : .
g [1 — ¢z + ¢; +¢,)} (10)
Alllength scales are still nondimensionalized by the same
characteristic length. Use of the above nondimensionaliz-
ation creates the following useful conditions. At stagna-
tion points

[’=1- ¢x=¢y=¢:=0s

and at sonic lines
-1
P+ O+ 02 =1, pz[l_i——]

= 0.633938145 ... (y = 1.40).

In addition, either of the two nondimensionalizations
given above can be used to evaluate the constant in the
1sentropic density-pressure relation [Eq. (6)] or the con-
stant in the steady Bernoulli equation, which is Eq. (7)
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with the time terms removed. For example, using the
second nondimensionalization from above (p,, and a*),
the following results are obtained:

Isentropic density-pressure relation
p_rtl (1
Py

Steady Bernoulll's equation:

2 2 1+ +1 (12)
12,1 -

Another widely used potential equation form is obtained
from Eq. (9) by making the additional assumption of
incompressible fiow. This yields the familiar Laplace’s
equation

Vi = e + ¢y + ¢: =0 (13)

Unlike the nonlinear full potential equation given by
Egs. (3), (4) or (9), Laplace’s equation is linear. Although
this further limits the fiow field physics that can be
simulated, e.g., shocks cannot be captured with Laplace’s
equation, the linear nature lends itsell to the powerful
method of superposition. A numerical approach that
utilizes superposition to solve Laplace’s equation is typi-
cally called a panel method. A key panel method charac-
teristic is that only the geometric surface of interest need
be discretized. In contrast, all numerical methods used to
solve nonlinear governing equations require a field or
volume discretization, a feature that greatly increases the
numerical algorithm complication. In a panel method,
flow tangency along the aerodynamic surface is obtained
by solving for source, vortex or doublet distribution
strengths for the surface’s discretized elements. This op-
eration requires and is computationally paced by the
inversion of a large matrix whose rank is equal to the
number of boundary elements. Thus, a key aspect of any
panel method implementation is the judicious selection
(both in number and placement) of an appropriate sur-
face element discretization. Panel method details are
beyond the scope of this presentation and will not be
discussed further. The interested reader is referred to
Anderson et al. [16] for basic information on panel
methods; Smith [19] for a historical presentation of
panel method development; and Hess [20] Hoeijmakers
[21] and Roggero and Larguier [22] for information on
current panel method applications.

2.3, Boundary conditions and circulation

To compiete the full potential governing equation spe-
cification, boundary conditions are required along all
boundaries. Specifically, these boundaries fall into three
categories: freestream, symmetry planes, and geometric
surfaces. The freestream boundary condition. simply

stated, is given by
2 2
x4yt iow, ¢,

where ¢, is the freestream distribution of the velocity
potential, usually uniform flow. The latter two boundary
conditions, symmetry planes and geometric surfaces, are
both treated in the same manner, ie., with a flow tan-
gency assumption given by

g n=70,

where n is a unit vector normal to the geometry of
interest. More on flow tangency boundary conditions is
presented in Section 2.8 where transformation techniques
for the full potential equation-are discussed.

For aerodynamic applications to be useful the numer-
ical formulation must be able to predict aerodynamic
loads, e.g., lift. The Kutta-Joukowski theorem says

L= ﬂqg(]f_,,r,

where L is the lift, p.. is the freestream fluid density, ¢, is
the freestream fluid velocity magnitude, and I' 1s the
circulation. The circulation around (for example) an air-
foil is mathematically defined as

F:ﬁgq-dl.

{

where [ is any closed path surrounding the airfoil for
which the velocity vector field is defined. Using Stokes’
Theorem it can be seen that circulation is inherently tied
to vorticity. that 1s

F=§q-dl= ” Vxq-ndS,
JJs

i

where S is the surface constructed such that its boundary
is / and n is the unit outward normal vector to S. Thus, 1t
can be seen from the above equation that an irrotational
velocity vector field, such as that predicted by the full
potential equation, is not capable of supporting circula-
tion, Le., there is no lift.

This situation can be corrected by adding a linear
potential vortex solution to the nonlinear potential that
surrounds the airfoil. This is accomplished by modifying
the freestream boundary condition as follows

¢nh = d)z -+ d)\'-

where ¢, is the new outer boundary condition, ¢, is the
usual uniform-flow velocity potential solution, and ¢, is
the newly added potential vortex solution given by

r

s
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In the above equation, I'/2m is a constant representing
the vortex strength and @ is the usual angular coordinate
associated with a traditional polar coordinate system
centered inside the airfoil. The vorticity associated with
the resulting potential solution is zero everywhere except
at the center of the vortex where 1t is infinite. The circula-
tion is a constant (equal to I') for all integration
curves/that include the airfoil and zero for all integration
curves that do not include the airfoil. Because of the
periodic nature of ¢, the ¢, function is double-valued at
0 = 0, taking on values of 0 and 2n. In other words, along
some “cut” in the velocity potential solution, usually
emanating from the airfoil trailing edge to downstream
infinity along the airfoil wake, the velocity potential
“jumps” from its 0 =0 value to its 8 = 2xn value. The
magnitude of this velocity potential jump (easily derived
by looking at the definition of ¢,) is equal to I'. 1n effect,
forcing the ¢, vortex strength to be equal to the airfoil
trailing edge velocity potential jump, is like a Kutta
condition that forces the airfoil-surface upper and lower
pressures to match.

2.4. Nonconservative form

Egs. (4) and (9) are two forms of the full potential
equation which are commonly used in numerical applica-
tions, especially when shock waves are expected to be
captured in the solution. These versions of the full poten-
tial equation are written in the so-called conservative
form, which is characterized by having all variables inside
the outer-most differentiation. The steady full potential
equation has also been solved in nonconservative form for
subsonic and transonic applications. For subsonic ap-
plications the nonconservative and conservative solutions,
assuming equivalently small levels of numerical error, are
virtually identical. For transonic applications involving
captured shock waves the nonconservative and conserva-
tive solutions are different. At shock waves the nonconser-
vative approach produces an error in the form of a mass
source that causes an error in shock position and strength.
The consequence of this error is discussed in detail in
Section 2.10. The nonconservative form of the full poten-
tial equation is presented here because of its historical
importance and because it provides a useful framework
for analyzing the conservative full potential equation.

The nonconservative form of the full potential equa-
tion is derived from the conservative form by using the
chain rule 1o expand derivatives. Expressions for the
density derivatives are obtained from the density expres-
sion [Eq. (10)], the speed of sound definition, and the
isentropic density-pressure relation [Eq. (11)]. Substitu-
tion of these derivatives into the expanded full potential
equation vields

(@® — 1)y + (a® — z"zld)“ +{a® — wiig..

— uvdy, — Juwe,, — 2ewe,. = 0. (14)

This is the steady, nonconservative full potential equa-
tion written in three-dimensional Cartesian coordinates.
The velocity components ¢,, ¢, and ¢, have been re-
placed by u, v and w, respectively.

The unsteady version of the nonconservative full po-
tential equation can be derived in a similar fashion and is
given by

(aZ - uz)d)xx + (az - r:)(ﬁvv + ((12 - ".2,'(})::
= 2uvg,, — 2uwe,. — 2rwe .
=y + 2ud, + 200, + 2wo,,. (15)

More on the characteristics of the full potential equation,
both conservative and nonconservative forms, is pre-
sented in Section 2.10.

2.5, Transonic small disturbance (TSD) potential equation

Another potential equation formulation used for com-
puting transonic flows about aircraft is the transonic
small-disturbance (TSD) potential equation. Many of the
numerical algorithm breakthroughs realized in solving
the full potential equation were first developed using the
simpler TSD potential formulation. The TSD potential
equation is derived from the full potential equation by
first defining a small-disturbance velocity potential ¢

Vip = q—q,,
where q is the usual local velocity vector and q,. is the

freestream velocity vector, which is assumed to be alig-
ned with the x direction. It is defined by

4. = Ul

With the above definitions, the small-disturbance velo-
city components of V¢ are given by

Py =U —Ug, @y =T, P =W

Derivation of the TSD potential equation begins by
substituting these small-disturbance velocity compo-
nents into the full potential equation [either Eq. (14) for
steady flows or Eq. (15) for unsteady flows]. Then after
neglecting small terms according to the small-distur-
bance assumptions given by

u’ﬁ u(f. u:’: ui‘
G R Qg Oyt TP R Py X Py X Pz T,

the three-dimensional unsteady TSD potential equation
becomes

[1 - Al?r - A/I'ZX (:‘ + 1)&J{/)\Y -+ (pry + P--
Uy
1
=y + 2y Q). (16)
az
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One term containing a small-disturbance quantity (the
first term) survives the small-disturbance analysis. This is
because for transonic flow

1 =ML =MLy + 1}-u——.

Eq. (16) is valid for subsonic, supersonic and transonic
flows that satisfy the original full potential equation
assumptions (inviscid, isentropic and irrotational flow)
and that are a “small disturbance” away from freestream.
An essential ingredient of Eq. (16}, and all transonic
governing equations, is that they are nonlinear, ie., the
(4 @x. term is nonlinear. This term is required to predict
shock waves, which are inherently a nonlinear phe-
nomena. Linearization of a transonic flow governing
equation removes the essential mathematics required to
predict shock waves.

Another variation of Eq. (16) that has been used in
many applications (see, e.g., [1,23]) is the low-frequency
TSD equation. If the frequency of oscillation of the prob-
lem under consideration is small enough, then the
¢, term can be neglected yielding

2 2 Px Jug
P= Mo = Mo+ D)= |0 + @y + Pz = 5 P

(7

A convenient nondimensional measure of a problem’s
frequency is obtained using the reduced frequency de-
fined by k = wc/u,,, where w is the problem’s physical
oscillation frequency measured in cycles per second.
When the reduced frequency of a specific unsteady prob-
lem is less than about 0.2 (and all other TSD assumptions
are valid). then the low-frequency TSD equation is usu-
ally considered to be valid.

Of course, the steady TSD equation is obtained by
neglecting all time derivatives in Eq. (16), which yields

U,

Egs. (16)-(18) are in nonconservative form, L.e., not all
variable coefficients are inside the outer differentiation.
To transform these equations into conservative form is
easily accomplished and vields [e.g., for Eq. {1§)]

[(1 M), —MI(+ D)X
2u,

} + P + @ = 0. (19)

Eqgs. (16)-{19) represent classical forms of the TSD equa-
tion. but several other forms exist, including forms de-
rived to better predict transonic flows on swept wings.
For more information on other TSD equation forms see
van der Vooren et al. [24] or Slooff [25].

Additional useful equations can be obtained from
Eq. (16). For example, by neglecting the last small-distur-

bance term. the unsteady small-disturbance equation
given by

i

(1 - Alzzr )(/),\'x + Pyy + P = ((Pn + 2“1 (0.\‘!) (20}

ELY

a

is obtained. This equation is linear and valid for either
subsonic or supersonic flow, but not transonic flow. Asin
the TSD potential equation case, a steady version of this
equation is obtained by neglecting all time terms, which
yields

“ - 1\42/ )(P,\,\‘ + (ﬂ_\')' + Pz = 0. (2})

This is the famous Prandtl-Glauert equation and can be
used to describe steady, small-disturbance potential flow.
Lastly, if the flow is assumed to be incompressible
{ie., a, — %, M, — 0) the small-disturbance potential
equation, valid for either steady or unsteady flow, be-
comes

Pex T+ Dyy + P = O: (22'

which is another version of Laplace’s equation. This
version is based on the small-disturbance potential func-
tion and differs from Eq. (13) in the boundary conditions
that are applied. both in the freestream and at the air-
foil/wing surface.

2.6. Small-disturbance boundary conditions

The freestream boundary condition consistent with
small-disturbance theory is that all disturbances must
vanish in the freestream, i.e.,

Prw = Py = Pzn =0

The flow tangency boundary condition for a typical
“thin" airfoil or wing used in conjunction with any of the
smal] disturbance formulations presented in the last sec-
tion is generally derived as follows: The standard tan-
gency condition can be implemented at the airfoil or wing
surface using

(& - (_ e \F _dg*(x.y)
U S ws \Px T Uy S dx '

where x is aligned with the freestream direction, v is in
the span direction and = is in the vertical direction. The
subscript “ws” indicates that the boundary condition is
applied at the wing surface. The functions ¢ (x, y) and
¢~ (x, y) define the upper and lower wing surfaces, respec-
tively. The small disturbance version of this boundary
condition is obtained by making two simplifications.
First, @, is neglected relative to u, in the middle term
denominator. Second, the flow tangency boundary con-
dition is applied at the airfoil slit, L.e.. at z = 0, instead of
the airfoil surface. This latter approximation greatly sim-
plifies the volume grid generation process for TSD
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potential applications because geometrical surfaces do
not have to be fitted with grids. This is a key reason that
this formulation was so widely used for three-dimen-
sional transonic flow applications in the early years of
CFD development. The final small-disturbance flow-tan-
gency boundary condition with these simplifications be-
comes

dg=(x. y)
dx

(P:('\‘, RS Ut) = Uy

This expression approximates the required flow tangency
boundary condition at the airfoil surface to an accuracy
consistent with small-disturbance theory. A key flaw in
small-disturbance theory is displayed in this boundary
condition at (for example) an airfoil leading edge where
the slope of the surface becomes infinite, and accurate
boundary condition implementation is impossible. This
difficulty is a symptom of the breakdown in small-distur-
bance theory at stagnation points. The streamwise
velocity component perturbation becomes large and is
actually equal to the freestream velocity at the stagnation
point. This fundamental limitation in the TSD potential
equation approach is the primary reason that its use has
declined 1n recent years.

2.7. Mathematical properties

The primary motivation for studying the nature of
partial differential equations (PDEs) in the present con-
text 1s to gain insight into the physics they describe and
to develop guidelines for the implementation of numer-
ical solution procedures. Different equation types gener-
ally require different solution algorithms. With this
purpose in mind, consider the following general quasi-
linear, second-order PDE:

Auyy + Buy, + Cuyy = F, (23)

where u 1s an arbitrary dependent variable and A, B,
C and F are (at most) functions of x, y, u, u, and u,. This
equation can be studied and classified by considering
the corresponding characteristic equation given by (for
a derivation of the characteristic equation and additional
discussion on this topic see Ames [26] and Mitchell [27])

vy 7 /dy
A -——) —B—')+C=O. 24
(\d,\' y (\d,\‘/ : (24)
Using the quadratic formula. the two characteristic direc-
tions associated with Eq. (23) are given by
_ + B+ . /B*—44C
(d.\")1 . 24 ’

(25)

The nature of these characteristics determines the equa-
tion classification. Eq. (23) is hyperbolic if the character-

istics are real and distinct; ie., if the discriminant of Eq.
(25) is greater than zero (B® — 4A4C > 0), then the equa-
tion is hyperbolic; parabolic if the characteristics are rea;
and coincidental (B? — 4AC = 0); and elliptic if the char-
acteristics are complex and distinct (B> — 44C < 0).

By using the discriminant test described above, it can
be shown that the TSD equation given by Eq. (18) (two-
dimensional version) is hyperbolic when

Px I—Mf,

>,
u. (',' + 1)1’\4;
and elliptic when

Dx 1~ *Mi

_— .

U (7 + DMZ

In other words, the sign of the first term coefficient

determines the equation type. If the coefficient is positive,

the Jocal flow i1s subsonic; if it is negative, the local flow is

supersonic. The nonlinearity of the first term is essential

for describing the mixed character of transonic flow and

is the mechanism by which shock waves are formed.
The characteristic directions associated with the TSD

potential equation are given by

dy , . Rt
(-i) = i[l - ME - Mi(y + uﬁ] :
dx 1.2 U,

Notice that these characteristic slopes are symmetric
about the x-axis regardless of the local velocity vector
orientation; i.e., the characteristics are not a function of
the y component of the velocity ¢,. A sketch of the
steady, two-dimensional TSD potential equation charac-
teristics for a typical supersonic point is presented in
Fig. 3. This situation. which is in dramatic contrast to the
full potential or Euler formulations, where the character-
istics are symmetric about the local stream direction, has
certain simplifying implications regarding spatial discret-
ization approximations for the TSD potential equation.
In particular, it 1s much easier to construct a spatial
discretization scheme for the TSD potential equation
with a numerical domain of dependence that is compat-
ible with the PDE’s mathematical domain of dependence.
As seen in Fig. 3, as v grows relative to u, the x-axis
symmetry condition for the characteristics becomes more
and more nonphysical. This is a direct result of the
small-disturbance assumption that requires ¢ to remain
small in order to keep the TSD potential equation valid.

Classification of the steady full potential equation
given by Egs. (9) and (10) is difficult because this set of
equations is not in the standard form given by Eq. (23).
However, the nonconservative full potential equation
[Eq. (14)] is ideally suited for this purpose. This equation
written in two dimensions is given by

(a? = uB@ e — 2ubdy, + (@ — 17)Py, = 0, (26)
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CHARACTERISTICS

Fig. 3. Sketch of the two-dimensional TSD equation character-
istics for a tvpical supersonic point.

where (again) u and v have been substituted for ¢, and
$,, and ¢ is the full velocity potential. The discriminant
defined in Eq. (25) for the full potential equation is
given by

B? — 4AC = u¥g? — a?),

where ¢* = u? + ¢%. It can be easily seen from the above
equation that the full potential equation is hyperbolic for
supersonic flow (g > ), parabolic for sonic flow (g = 0},
and elliptic for subsonic flow (g < a). Even though this
result is obtained for the nonconservative form of the full
potential equation, it is also valid for the conservative
form because both forms are mathematically equivalent.

The characteristic directions associated with the full
potential equation are given by

N Y
dy -~k Vaigt —a’)
dx)l . at —u? '

Notice that the characteristic directions are not symmet-
ric about the x-axis as is the case with the TSD potential
equation. Instead, the characteristics are symmetric
about the stream direction. This can be shown by trans-
forming the full potential equation [Eq. (26)] into a local
stream and stream-normal coordinate system (s, n) using
the following transformation

u v v u
X==-§——0, y=-=5+-n
4q q q

The resulting equation 1s given by

(aZ - q:)d)sx + azd)nn =0, {27)
where

1 2 el
¢ss = ?(uu(f’x.\' + 2“1“(?),“ + l“_(/)\-r]~

Lo,
(i)mx - Eg(l"ff’.\-x - Zuvd)x; + lf2¢_\'\’)'

CHARACTERISTICS

Fig. 4. Sketch of the two-dimensional full potential equation
characteristics for a typical supersonic point. {a}) Physical do-
main. (b) Computational domain.

Using the new version of the full potential equation given
above, new characteristic directions can be derived and
are given by

(ds) _ ta
dn /., \/qz—a:'

N

Of course, these characteristic slopes are real and
distinct only for hyperbolic flow (g > a). Since they
are equal in magnitude, but opposite in sign, they are
symmetric about the stream direction. A sketch of the
steady, two-dimensional full potential equation charac-
teristics for a typical supersonic point is presented in Fig.
4. Note the comparison with the TSD characteristics
presented in Fig. 3. The mathematical domain of depend-
ence associated with the full potential equation follows
the physical domain of dependence more generally than
does the TSD potential equation. Spatial discretization
schemes designed to solve the full potential equation
must take this fact into account for proper numerical
operation.

2.8 Transformation techniques

So far all potential equation formulations have been
presented using Cartesian coordinates. Often, before
solution algorithms can be implemented, the governing
equations must be transformed from the physical domain
(Cartesian coordinates) into some suitable computa-
tional domain. This is a requirement for finite-difference
and some finite-volume methods, but not methods based
on unstructured grid approaches, which are described in
Section 3.10. Even applications that use Cartesian coor-
dinates in the computational domain, e.g., most TSD
applications, typically require the use of stretching or
shearing transformations or both. The primary reason
for applying an independent variable transformation to
the governing equation is to transform any geometrical
surfaces in the problem into constant coordinate lines in
the computational domain. Thus. boundary-condition



implementation and grid clustering at geometrical surfa-
ces can be achieved without undue difficulty.

A general. independent variable transformation writ-
ten for unsteady, three-dimensional applications, which
maintains strong conservation-law form of the original
governing equation, is given by (see [28-31] for more
discussion on this type of transformation procedure)

S=3dx nnn op=nlyv oz, {=xyz0),
T =1, (28)

where x. ¥, £ and ¢ represent the Cartesian-coordinate
physical domain and £, 5, { and t the computational
domain (see Fig. 5 for a two-dimensional example). The
conservative full potential equation written in Cartesian
coordinates [Egs. (4) and (8)] is transformed into the com-
putational domain £, u, { 7 coordinate system by ap-

UPPER OUTFLOW
BOUNDARY
AIRFOIL WAKE CUT
LOWER OUTFLOW
BOUNDARY
(a)
LOWER
OUTFLOW UPPER
BOUNDARY OUTELOW
n BOUNDARY
A OUTER BOUNDARY /
I
»
LOWER AIRFOIL UPPER
WAKE CUT WAKE CUT
(b)

Fig. 5. Numerically generated airfoil transformation [(x, v) «

(&.m] showing a “C” grid 1opology. (a2} Transonic flow.
{b) Supersonic flow.
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plying the standard chain rule written for the inverse of
the transformation given by Egs. (28), namely

I3} 0 ¢ . ¢
ST TSy Ty T ix T
ox e e lele
0 .0 d é
— =0 e o
cy o {

(29
lé 0 L I3
=Gt TG
¢z ag (3‘5,
¢ L d ¢ e é
T=C1T—,+'7r2—+‘ér._,,+~ )
at g on [é18 ot

where the terms containing derivatives of T with respect
to x, y or z from the first three lines in Eq. (29) are zero
because of the dependence of t on only 1. However, the
terms containing derivatives of &, #, or { with respect to
t are, in general, not zero. The full potential equation
given by Eqs. (4) and (8) transformed using Egs. (28}
becomes

P pU oV oW ,
- - — —_ ] = 3
<J>:+<J>:+(J>::+<J>: : .

|
o=+ i e 226 v = 200,

{ <

—(V 4 0y — (W + :J@:J}W“. (30b)
where
U=¢& + A0+ Ay + As:.
V=1 + Asdpe + 420, + A0, (31a)
W=1{ +As¢: + A, + A3¢:.
and
Ay = Ve W=+ +¢E

N
¥

I
Y
3
Il
T
+
=
=
+
"T‘NN

Ae =V V{=nl, +nd +n:L,

J=Lanls + 0 + Sy — ol — Sl
— Cxl:ly

= (X dnZ + X VZy + X¥iZy = XeViZy = XphaZ;
— x:1,2:) "L {31b)

In Egs. (31a)and (31b), U, V and W are the contravariant
velocity components along the £ 5 and { coordinate
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directions, respectively; 4, -Aq are metric quantities; and
J is the determinant of the transformation Jacobian. The
metric quantities given above in Eq. (31b) are evaluated
using the following metric identities:

&= J0yz =y e = Sz = vz,

gy =Jxz —xz;)

&= Jx, . — x:vy),

o= Jyezy — YaZeh 2.,
{ = J(x,z: — Xe5y)y M= = Xl = Velly = Zes
Co=dixeyy — X So= = xele =l —ads

The transformed full potential governing equation given
by Egs. (30a) and (30b) can be used for general geometries
in which the aerodynamic surface of interest is mapped to
a constant coordinate line in the computational domain,
even if the surface is moving in time. For steady flow
problems, the proper transformed full potential govern-
ing equation is simply obtained by setting all time terms
in the above equations equal to zero. With this mapping
procedure, for either steady or unsteady problems, ap-
plication of the flow-tangency boundary condition 1s
easy and accurate to implement. For example, if the
aerodynamic surface of interest is defined by
F(x, v.z, 1) = 0 then the flow tangency boundary condi-
tion is given by

DF ¢F
= 4q V=0 32
Dt at 9 (32)

In the & n, I, 1 computational domain, assuming (for
example) that the aerodynamic surface of interest F is
mapped to an 5 = constant surface, the flow-tangency
boundary condition becomes

me+q V= + (g + &,j + bk (nd + o+ n:K)
=V =0 (33)

More simply stated, the contravariant velocity compon-
ent in the -direction ¥ must vanish at the = constant

SONIC LINE ~.

WAVE

u/_/
»

(a)

-
- SHOCK
(M, £13)

surface where flow tangency is required. For problems in
which the boundary does not change with time, the
proper flow tangency boundary condition is obtained
from the above condition by simply setting the time term
to zero. If the n = constant surface is a ) = constant
symmetry plane, the above flow tangency boundary con-
dition is also generally applicable.

2.9. Shock wave capture criteria

The full potential equation formulations given above
are valid for isentropic, irrotational flows about arbitrary
shapes. To obtain physically realistic results, however,
the full potential equation is restricted to shapes and to
flows for which viscous effects (in particular, flow separ-
ation) are not important. The full potential equation is
also restricted to flows that contain at most weak shock
waves. Thus, allowable freestream conditions range from
incompressible (M, = 0) to supersonic (M, > 1), pro-
viding the shock waves are “weak.” The weak shock
wave condition is approximately satisfied if the max-
imum normal shock Mach number never exceeds 1.3.
Fig. 6 shows two typical flow situations which are gener-
ally valid for full potential equation simulations, Fig. 6a
showing a typical transonic flow field and Fig. 6b show-
ing a typical supersonic flow field.

The full potential formulation. despite the isentropic
assumption, is approximately valid for these weak shock
wave cases because the entropy produced by such weak
shock waves is very small. This is evident by looking at
the entropy change across a shock wave {As) as a function
of the upstream normal Mach number component (M),
which is given by [32]

AS=SZ — 85 =0(M5'_ 1)3*

where s, and s, are entropy values upstream and down-
stream of the shock wave, respectively. Note that for
small values of M2 — 1 the entropy production is very
small, and the isentropic assumption is valid. A compari-
son of the isentropic shock jump relation written for

M >1
V
ATTACHED
BOW SHOCK
(b)

Fig. 6. Typical transonic and supersonic flow cases for which the full potential formulation is valid.
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Fig. 7. A comparison of the full potential and Rankine-
Hugoniot {Euler equations) shock-jump relations for a one-
dimensional normal shock wave, taken from Steger and Baldwin

[33].

a one-dimensional normal shock wave, given by

. —I N iy -1y
[(1 - 03 "’*J
P 1
/ w1 MDD
=12 ;
[( = ]¢x/) <z>x]2

with the Euler shock jump relations (the Rankine-
Hugoniot conditions) s given in Fig. 7 (taken from Steger
and Baldwin [33]). For a local upstream Mach number
(M) at or below 1.3 a reasonable approximation is
obtalined by the isentropic formulation. Values of M less
than one correspond to expansion shock waves, which
are physically excluded by entropy. Since potential for-
mulations are isentropic. another mechanism must be
introduced to exclude expansion shock waves. The intro-
duction of dissipation or artificial viscosity by a suitable
upwind-biased discretization scheme in supersonic re-
gions of flow achieves this effect and will be discussed in
more detail subsequently.

2.10. Conservative versus nonconservative forms

In 1954 Lax [34] showed the importance of using
conservative form for the fluid dynamic equations when
shock capturing schemes are used. This conclusion is
based on the fact that nonconservative differences of
discontinuous flow quantities across shock waves are
numerically inaccurate. Differences of flow variables,
which are conserved. that is, which are continuous across

shock waves, are much more accurate. This, of course, is
a relative statement. Use of conservative form does not
by itself guarantee an accurate resolution of captured
shock waves. Many other numerical considerations play
an important role. However, if a shock-capturing scheme
is used to solve a nonconservative form of the governing
flow equations, no matter what the numerical scheme
characteristics, significant errors in the shock wave posi-
tion and strength can result.

If this is true and was known as early as the mid 1950s,
then why was there so much attention devoted to solving
the nonconservative potential equation in the early
1970s? The answer to this question is twofold. First, the
nonconservative forms of the TSD and full potential
equations are more convenient to solve because of the
sign change associated with the leading term coefficient
at or near the sonic line. This allows a simple construc-
tion for type-dependent numerical schemes. This prop-
erty is not shared by conservative forms of these equa-
tions. The second reason is that the error induced by
nonconservative form for a shock-capturing computa-
tion involving only weak shocks is not large, and it
fortuitously produces results (for inviscid computations)
in better agreement with experiment than conservative
schemes.

In the previous section a plot comparing the shock
polars for the Euler and full potential equations is pre-
sented (see Fig. 7). Although a similar analyvtic shock
polar for the nonconservative full potential equation
cannot be derived, shock jumps obtained computation-
ally can be compared (see Gregg and Henne [35] for
a number of computations where this has been done).
The nonconservative shock polar, thus computed. com-
pares more favorably with experiment than with conser-
vative results. This fact has caused the nonconservative
potential formulation to be utilized in many different
applications. But why does this behavior exist and is
conservative form really the correct form to use?

The superior experimental correlation that nonconser-
vative potential methods exhibit relative to conservative
methods is due to an effective mass source introduced at
shocks. This numerically generated “error™ fortuitously
models the reduced shock pressure rise caused by the
shock/boundary-layer interaction, and therefore, in most
cases, produces better agreement with the experimental
pressure distribution than a conservative result. Newman
and South [36,37] present a quantitative description of
this behavior. In this study, conservative and nonconser-
vative TSD potential solutions are computed about
a 10%-thick, non-lifting, parabolic-arc airfoil. Pressure
distributions and streamline deflection patterns for this
problem at two different freestream Mach numbers
(M, =0.84 and M, = 0.95) are presented in Fig. &.

The nonconservative shock wave at the lower free-
stream Mach number is weaker and slightly forward of
the conservative shock. For the higher freestream Mach
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Fig. 8. Computed symmetry line pressure coefficients and streamiine deflections for non-lifting transonic flow past a 10%-thick

parabolic-arc airfoil (taken from Newman and South [36,37]).

number case, the conservative result exhibits a so-called
“fish-tail” shock wave solution (an oblique shock ema-
nating from the trailing edge followed by a normal shock
about half a chord downstream of the airfoil trailing
edge). The nonconservative result for the higher Mach
number case is quite different than the conservative result
exhibiting only a single normal shock at the airfoil trail-
ing edge. The computed streamline deflection patterns in
Fig. § show the cause for these pressure distribution
discrepancies, which seem to increase with Mach num-
ber. Note that the vertical scale has been magnified by
a factor of about 20 to accentuate the situation. The
conservative streamlines entering the flow field are the
same height as those leaving. However, the nonconser-
vative streamlines are deflected upward (at the approxim-
ate position of the shock wave) indicating a numerical
error resulting in effective mass addition at the shock
wave. Thus, use of the nonconservative form destroys
global mass conservation when captured shock waves
are present.

Note: This situation is alarming for external flow calcu-
lations but disastrous for internal flow situations where
a global mass balance is even more important.

When viscous corrections are added to the simulation,
the conservative versus nonconservative Controversy
changes. The addition of viscous corrections to inviscid
formulations is important for many calculations in the
subsonic and transonic cruise regime. If the viscous cor-
rection procedure is accurate in simulating all aspects of
viscous flow, then the nonconservative formulation will
still produce mass sources at shock waves, and therefore,
introduce errors into the solution. The conservative for-
mulation, with accurate viscous corrections, will produce
the correct physical answer. at least, within the limita-
tions of the irrotational and isentropic assumptions. The
ultimate formulation must be based on the mathemat-
ically sound conservative form. Most recently produced
and utilized potential fiow codes have been based on
conservative formulations, and this trend is anticipated
to continue.
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211 Full potential equation nonuniqueness

In 1981 Steinhoff and Jameson [38] described
a nonuniqueness problem for the steady, conservative full
potential equation. Additional work further exploring
this phenomena is presented in Salas et al. [39-41]
for the steady full potential equation, in Dowell et al. [42]
for the unsteady TSD equation, and Williams et al. [43]
for the unsteady TSD equation run in both steady and
unsteady modes with and without a simple boundary
layer correction procedure. In these studies the
nonunigueness exists for both steady and unsteady flows.
For steady flows, it manifests itself in the form of mul-
tiple, significantly different solutions at one angle of at-
tack. These multiple solutions exhibit dramatically differ-
ent values of circulation, and therefore, dramatically dif-
ferent values of lift. For unsteady flows it manifests itself
in the form of non-zero mean lift for harmonic pitch
oscillations of a symmetric airfoil at a zero mean angle
of attack. For both steady and unsteady computations,
the number of iterations or time-steps required for the
nonuniqueness to appear is large, being an order of
magnitude more than the number of iterations required
for tight convergence of unique computations.

The nonuniqueness has only been exhibited in two-
dimensional simulations, i.e., airfoil computations, that
utilize the conservative form of the full potential or TSD
equations. For a particular airfoil, the nonuniqueness
oceurs over a narrow freestream Mach number range
involving transonic flow conditions, and thus, involves
a shock wave on at least the upper or lower airfoil
surface. This anomaly has not been demonstrated for the
nonconservative full potential equation (see Salas et al.
[41]) nor for the unsteady full potential equation (see
Murthy [44]). It also has not been demonstrated for any
three-dimensional potential formulation involving tradi-
tional aerodynamic problems, e.g., transport wing or
wing-body computations. However, it can be demon-
strated in three dimensions for wing applications when
the aspect ratio is set to a large value, e.g., at or above 24
(see Holst [45]). For such computations. in the appropri-
ate transonic Mach number range, the nonunique solu-
tion exists at the wing root, where the solution is essen-
tially two dimensional in nature, but transitions to
a unmique solution at the wing tip. Another interesting
characteristic is that a nonisentropic correction to the
two-dimensional conservative full potential equation (as
described in Section 3.3) restores a unique lift-angle-of-
attack relationship. at least for the cases presented in
Zi-qiang and Xue-Song [46]. Finally, McGrattan [47]
demonstrates that for transonic airfoil solutions with
very weak shocks involving a 3%-thick airfoil, the con-
servative full potential and the Euler equations both
produce nonunique solutions, i.e., a significant nonzero
value of lift for a symmetric airfoil at zero angle of attack.
The two solutions are not identical, but are very close.

This suggests the nonuniqueness difficulty, as speculated
in earlier studies, is not due to the isentropic, irrotational
nature of potential formulations, but that the cause lies
elsewhere, perhaps in how the Kutta condition is imple-
mented.

More quantitative characteristics of this behavior are
exhibited in Fig. 9, where several lift versus angle-of-
attack plots are presented. The first three curves in this
figure; CFP (2D), conservative full potential in two di-
mensions; Euler (2D). and NFP (2D), nonconservative
full potential in two dimensions; are from Salas et al.
[41]. The last curve, CFP (3D), is a three-dimensional.
conservative full potential result from Holst [45]. The
first three curves have been computed using two-dimen-
sional algorithms for the flow around an NACA 0012
airfoil at a freestream Mach number of 0.83. Because of
the multi-valued nature of the CFP (2D) curve, its com-
putation was achieved by specifying lift and computing
the angle of attack as described in Salas et al. [41]. In
each of these cases, the solution is obtained using a fine
grid with a tight convergence criteria, i.e., numerical
errors have been minimized. The last curve presented in
Fig. 9 is computed using a three-dimensional algorithm
for the flow about an isolated-wing with NACA 0012
airfoil sections at zero sweep, a taper ratio of 1.0 and an
aspect ratio of 8.0. Thus, the root station of this simula-
tion approximately matches the other two-dimensional
simulations displayed in Fig. 9.

From Fig. 9, the following observations can be made:
{1) The two-dimensional conservative full potential curve
18 nonunique. exhibiting three solutions for each angle of
attack in the approximate range — 0.3° < z < 0.3°. The
lift-curve slope for this result is nonphysical, exhibiting
the wrong sign in the anomalous angle of attack range.

0.8

CFP (2D)
06 — Euler (20)
NFP (2D)
04 CFP (3D)

0.2

L

LIFT COEFFICIENT, C
o

- 2.3 oy 05 0 0.5 1 1.5
ANGLE OF ATTACK (deg),«

Fig. 9. Lift curves obtained from several different CFD codes for
the NACA 0012 airfoil at a freestream Mach number of 0.83.
The first three curves in this plot have been taken from Salas
et al. [41] and the fourth curve [CFP (3D)] is from Holst [45].
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(2) The Euler and nonconservative full potential curves
exhibit unique results. i.e., one value of lift for one angle
of attack. (3) The three-dimensional conservative full
potential curve also exhibits unique results. The above
observations describe the major known steady-flow char-
acteristics of the full potential nonuniqueness problem.
Explaining the cause is more difficult. It appears to be
formulational in nature and not due to any aspect of
numerical implementation, but a more definitive ex-
planation is not available as of this writing. A primary
ameliorating factor 1s that the nonunigueness does not
appear in traditional three-dimensional aerodynamic
problems, where virtually ail potential applications are
implemented.

3. Algorithms and applications

3.1. Earlv TSD potential equation algorithms
and applications

The first computations with a transonic potential for-
mulation for an aerodynamic application involve the
transonic small-disturbance (TSD) potential equation.
As described in the previous chapter, the TSD potential
formulation has the additional assumptions beyond the
full potential formulation that the flow be aligned with
a particular coordinate direction (usually the x-coordi-
nate) and that only small changes or disturbances in the
velocity components exist throughout the entire flow
domain. In addition, flow tangency boundary conditions
are applied along simplified surfaces that only approxim-
ate the geometry of interest, e.g., along the chord line of
an airfoil instead of the actual airfoil surface. These
additional assumptions greatly simplify implementation
of a TSD potential equation solver, but are severely
tested at stagnation points.

A key breakthrough in the field of CFD was the
discovery of “tvpe-dependent differencing” in 1971 by
Murman and Cole [48] and was demonstrated using the
TSD potential formulation for transonic airfoil simula-
tions. Prior to 1971, simulation of transonic flow using
a potential formulation was not possible. Inconsistencies
between subsonic flow regions, which require central-
differencing. and supersonic flow regions, which require
upwind-differencing, caused numerical difficulties. The
Murman-Cole algorithm “switches™ the differencing
type from central to upwind or vice versa as dictated by
the local Mach number, maintaining stable operation for
transonic flows, even those with strong shocks. This idea
was extended to axisymmetric bodies by Bailey [49] and
Krupp and Murman [50] and to three-dimensional iso-
lated-wing applications by Bailey and Steger [51], Bal-
lhaus and Bailey [52] and Newman and Klunker [33]. In
all these applications the nonconservative form of the
TSD equation is used.

The conservative form of the TSD equation is solved in
two dimensions by Murman [54] and in three dimen-
sions for isolated wings by Bailey and Ballhaus [55]. The
type-dependent spatial difference scheme used to solve
the two-dimensional TSD potential equation in conser-
vative form can be presented by considering

fe +9, =0,

which is a reformulation of the conservative TSD poten-
tial equation where

f=0 =M, — M2 + Doz, g = o,

The f and g quantities represent mass fluxes (or more
appropriately, perturbations to the [reestream mass
fluxes) in the x and y directions, respectively. Note that
all variables are inside the outer differentiation, a stan-
dard characteristic of conservation form. A discretization
scheme valid for both subsonic and supersonic flow re-
gions 1s given by

1 1
E(.Fw vy fiov2a) A_y(.gi.j' 2 = Giy-120=0

where the i and j subscripts indicate location in the
finite-difference grid. such that x = /Ax and y = jAy. and

7is a modified flux defined by

vy =i fisrzy + (0~ fioyz

In the above equation, y; is a switching function defined
by

M, <1,

M

jl.
Hi lO, > L
where M, ; is the local Mach number computed at point
i, j. The above differencing scheme contains four different
schemes or operators: (1) subsonic operator (y; =1,
-1 = 1}, (2) supersonic operator (¢; = 0, ;. = 0. (3)
sonic-point operator (y; = 0, p;-; = 1), and (4) shock-
point operator (; = 1, g;—; = 0). This scheme 18 auto-
matically second-order accurate and centrally differenced
in all subsonic regions of flow and first-order accurate
and upwind-differenced in all regions of supersonic flow.
This scheme is also conservative, i.e., the fluxes in each
cell have an identical flux in the immediately adjacent
neighboring cell, such that all internal fluxes cancel iden-
tically.

A 1ypical example (taken from Bailey and Ballhaus
[55]) showing both TSD nonconservative and conserva-
tive inviscid pressure distributions compared with experi-
ment is displayed in Fig. 10. These results are for a swept,
isolated-wing configuration (ONERA M6) at rather
harsh transonic flow conditions, M, =092, = 3"
Note that the nonconservative results are in better agree-
ment with experiment than the conservative results.
However, both results still suffer serious disagreements.
In particular, both computational results fail to predict
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the forward swept shock that is evident in the three
outboard stations of the experiment. The large disagree-
ment 1 the upper-surface aft-shock location for the
conservative result s primarily caused by strong-
shock ‘boundary-laver interactions.  which  are  not
modeled in this invisaid computation. The conservative
method does @ better job of predicting the weaker shock
wuve on the lower wing surfuce. This result is largelv
interesting because it shows an early level of achievement
in modeling transonic flow using the three-dimensional
TSD equation,

Numerous cfforts utilizing the TSD potential equation
for simulating aerodynamic flows about a large variety of
three-dimensional configurations have been reported in
the literature. Examples of some of these efforts include
Rohlfs and Vanino [56] Schmidt and Hedman [37] and
van der Vooren et al. [3824] for wing and wing'body
applicattons: Mason et al. [397 for wing and wing-body
applications with viscous corrections: Albone et al. [60]
and Firman [61] for wing. wing-body and wing-body-
multiple-store computations with and without viscous
corrections: Rae [62] and Rae and Lordi [63] for three-
dimensional cascade computations: Shankar and Malm-
uth {647} for wing-bodv-cunard computations: Phillips
and Waggoner {637 for wing computations mounted
mside wind-tunneh wadlssand Boppe [667 and Boppe and

Stern [67] for wing, wing-body and wing-body-store-
winglet computations. Most of these efforts utilize the
nonconservative form of the TSD potential cquation due
to the fortuitously improved agreement with experi-
mental pressure distributions. In some cases the conser-
vative form of the TSD cquation is available as an option
as coding differences between these two TSD potential
governing equation forms is not that great [compare
Egs. (18} and (19)].

Most of the TSD potential applications just hsted
utilize a sheared-stretched Cartesian-like mapping pro-
cedure. whereby the wing planform is mapped to o rec-
tungle (see Fig. 11). Thus. each span station has the same
number of grid points along the chord. The wing leading
edge is positioned to lie between two grid lines. Thus. the
infinite slape problem at the leading edge of o blunt wing
does not cause any difficulties n applving the tangency
boundary condition. The invalidity of the small distur-
bance assumption near the leading edge stagnation line s
not changed by this grid placement strategy. but (at least)
the slope is never actually infinite. In general. poor results

are obtained from any TSD formulation in the vicinity of

a blunt leading edge stagnation point line.
Several of the TSD methods listed above utilize
the method of gnd embedding (first introduced by

Boppe {6671 This approach uses a coarse grid 1o cover
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the entire flow ficld from far-field boundary to wing sur-
face and o localized fine grid to resolve detail near the wing
surface. Information from the outer coarse grid is passed
to the fine inner grid outer boundary via mterpolation.
When the interface between the fine inner grid and the
coarse outer grid is placed sufficiently far [rom the wing
surface. no deteroration in solution accuracy at the wing
surface can be detected. This concept is very attractive
hecause it dramatically reduces the total number of grid
points and the total amount of computer time required 1o
achieve a given level of accuracy at the wing surface.

In all of the TSD references presented above the iter-
ation scheme utilized is successive line overrelaxation
{SLOR). which was a very popular potential equation
relaxation scheme for the 1970s and early 1980s. A tvpi-
cal SLOR method for solving Laplace’s equation [sce
Eqg. (13)] 18 given by

gt =0 (34)

iy

where the i and i subscripts denote position i the finite-
difference grid and the n superscript denotes iteration
number. The n 4+ | superscript is an intermediate iter-
ation level used to obtain the n 4+ 1 level by

g = (O !

Al = Ny

In the above cquation the parameter o 18 @ relaxation

Foctor™ To obtain all the » + | values for each 7 = con-
stant Hine requires the inversion of a scalar tridiagonal
matrix. Becavse the grid points along the 7 -1 = con-

stant line are updated prior to the i = constant line
{assuming the iteration scheme starts at i = 1 and pro-
ceeds 10 the maximum value of i). the values of ¢ ati — 1.
j have already been updated. and thus. the superseript on
&i_ 1. is n+ L It should be noted that the above SLOR
scheme is valid for both the small-disturbance potential
and the full potential forms of Laplace’s equation. with
the only differences entering through the boundary con-
ditions.

A standard von Neumann stability analvsis of the
above scheme shows that w must be bounded by 0 and
2 for a stable iteration to result. Values of ¢y approuching
2 generally produce the fastest convergence with ¢ =2
being optimum as the number of grid points becomes
infinite (scc Garabedian [68] or Ames [26] for more infor-
mation on this point). When o > 1 the above scheme is
said 10 be overrelaxed. and when o << 1 the scheme is
said to be underrelaxed. When o = 1 the above scheme
hecomes the traditional line Gauss-Saidel relaxation
schemie.

The use of “overrelaxation” in relaxation schemes s
a very important development that greatly improves con-
vergence efficiency. It can be estimated (see Ames [26])
that the number of iterations N, required to drop the
error by N, orders of magnitude for the line Gauss—
Seidel scheme is

and for the “optimally overrelaned™ STOR scheme 18

[1360)
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where A is the grid spacing used in the computation. It is
easy to see from these estimates that the SLOR scheme
can be one to two orders of magnitude faster than line
Gauss-Seidel for problems utilizing fine grids. Although
these theoretical convergence estimates are only (strictly
speaking} valid for Laplace’s equation, qualitatively sim-
ilar trends for convergence efficiency are exhibited for
nonlinear potential formulations. Despite the significant
enhancement in convergence efficiency offered by over-
relaxation, other methods are still significantly faster, as
will be seen shortly.

3.2, Early full potennal equation algorithms
and applications

The first nonlinear full potential algorithms were de-
veloped by Steger and Lomax [69] and Garabedian and
Korn {70] and were utilized to simulate transonic flow
about airfoils. The latter approach uses conformal map-
ping to map the domain external to the airfoil to a unit
circle. This provides an elegant grid generation option
and allows for simplified application of boundary condi-
tions. Both of these approaches utilize the nonconser-
vative form of the full potential equation and thus, pro-
duce shocked flows in which the position of the shock is
affected by the numerical scheme. Nevertheless, these
approaches, primarily the Garabedian-Korn algorithm,
have often been used for many types of applications.
Examples using the Garabedian-Korn code, including
applications with a boundary layer correction procedure,
are presented in Bauer et al. [71].

Throughout the 1970s numerous additional develop-
ment efforts produced many two-dimensional and axisym-
metric codes designed to solve the nonconservative full
potential equation for transonic flows. For example, Car-
lson [72] produced a transonic airfoil analysis code that
also included an inverse design option. South and
Jameson [73] produced the first axisymmetric full poten-
tial flow solver called RAXBOD (see Keller and South
[74] for additional derails). This methodology is capable
of simulating flows over sharp or blunt axisymmetric
bodies at transonic and low supersonic speeds. Ives and
Liutermoza [75.76] produced a transonic cascade analysis
procedure with or without boundary laver correction.
This two-dimensional approach has a stream-tube con-
traction correction that provides an approximation for
three-dimensional effects. A number of codes have been
produced for axisvmmetric transonic inlets including the
work of Arlinger [77]. Baker [78], Caughey and Jameson
[79] and Reyhner [80]. The iteration scheme in the major-
ity of the above efforts is SLOR or a variety of SLOR.

The first three-dimensional transonic full potential sol-
ver {called FLO22), which also utilizes the nonconser-
vative form of the full potential equation, was developed
by Jameson [81]. This code utilizes the SLOR iteration
scheme and a sheared-parabolic conformal-based map-

ping that effectively unwraps an isolated-wing into a rec-
tangular domain. A typical FLO22 grid displayed in the
physical domain is shown in Fig. 12. A key aspect of the
FLO22 algorithm is the concept of “rotated differenc-
ing”. In this approach, the full potential equation is
transformed into stream and stream-normal coordinates
[see Eq. (27)]. The terms contributing to ¢,, are always
centrally differenced. The terms contributing to ¢, are
centrally differenced in subsonic regions and upwind
differenced in supersonic regions. With this approach, the
computational domain of dependence always includes
the physical domain of dependence, thus insuring im-
proved stability for any orientation of the velocity vector.
Another important contribution of this work is the de-
scription of the relaxation scheme as an iteration in
“time”, i.e., a nonphysical time-like coordinate that be-
haves like the hyperbolic physical time coordinate. An
important result of this time-like analysis is that tem-
poral damping terms [of the form ¢, x (u/glp, +
(v/q)¢.] are required in supersonic regions of flow for
a stable iteration scheme. For more information about
this algorithm see Jameson [81] and Jameson et al. [82]
or for information about FLO22 with a simple viscous
correction procedure see Newman et al. [83].

A typical FLO22 surface pressure distribution com-
pared with experiment (taken from Henne and Hicks
[84]) is shown in Fig. 13. The experimental results dis-
played in this figure are for a supercritical wing low-
mounted on a fuselage. The computational results are for
only the wing portion of this geometry. A viscous correc-
tion is added using a two-dimensional strip approach.
The flow conditions for this simulation include
M, =08 and 2 = 2°. Agreement between the computa-
tion and experiment is generally good at all wing span
stations. Note in particular that the double shock
character for the upper-wing-surface solution is evident
in both the experimental and computational results.

Plane of symmetry

Fig. 12. Typical three-dimensional grid arrangement used in the
FLO22 code involving a sheared-parabolic conformal-based
mapping procedure. taken from Henne and Hicks [84)
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Fig. 13 Pressure coefficient comparisons for a transonic wing computation using the nonconservative full potential FLOZZ computer

code. M, = 08, = 2. taken from Henne and Hicks [84].

Additional three-dimensional full potential applications
based on nonconservative form include the inlet work of
Revhner [85], the wing simulations of Forsey and Carr
[86], the cranked-wing applications of Chang and
Tauber [87], and the quasi-unsteady efforts of Chang
[88]. Chang and Tung [89], Arieli et al. [90] and Egolf
and Sparks [91]. The latter four efforts are focused on
helicopter rotor blade applications involving either hover
or advancing blade transonic flow simulations.

3.3 Conservative full potential equation algorithms

The primary goal of this section is to present spatial
discretization schemes for solving the conservative full
potential equation. The main emphasis is on finite-differ-
ence and finite-volume schemes. Finite-element schemes
will be discussed in Section 3.11.

3.3.1. Finite-volume schemes
The first full potential solution method using conserva-
tive form was developed by Jameson [92] for solving

transonic airfoil flows in 1975. This work was followed
closely by a series of very successful three-dimensional
full potential solvers called FLO27, FLO28. and FLO30
[93-95]. The FLO27 code is capable of solving transonic
flows about isolated wings or wings mounted on infinite
circular cvlinders. The FLO28 and FLO30 codes are very
closely related derivatives of FLO27. but have more
sophisticated abilities for treating the fuselage. A com-
parative study of these FLO codes can be found in
Verhoff and O’Neil [96], where, in particular. the various
fuselage modeling capabilities are evaluated. The actual
grid mapping transformation used for most FLO27 and
FLO28 wing calculations is very similar to the trans-
formation used for the FLO22 code (see Fig. 12). The
transformation used in the FLO30 code is somewhat
more sophisticated and s described in detail in Caughey
and Jameson [93]. All of the above FLO codes utilize the
SLOR iteration scheme. Two examples where FLO30
has been upgraded with the addition of boundary layer
corrections are described in Street [97] and Woodson
et al. [98]. An example where the grid generation



capability used in FLO28& has been upgraded using the
general grid generation capability of Thompson et al.
[99] is described in Yu [100]. In the latter effort the
improved grid generality is utilized to produce a trans-
onic flow solution about a wing-body-nacelle-strut con-
figuration. An example where the FLO27 code has been
significantly enhanced is the work of Chen et al. [101]. In
this effort a boundary laver correction code and an
improved two-zone grid generation capability are utiliz-
ed to compute transonic flow about a fuselage-pvlon-
nacelle configuration including both power-on and
power-off cases.

The finite-volume spatial discretization scheme used in
the FLO-series of codes (presented now in more detail) is
designed to approximate the three-dimensional conser-
vative full potential equation written in general non-
orthogonal coordinates. This scheme, presented in two
dimensions for brevity, is designed to solve

.!) U ) (’/’ v )
— | +{—=] =0
( J )T

n
S =1
o= [1 + (M - U, — 1%»,,)} . (37)

where the above equations use p,. and a, nondimen-
sionalization. They are easily obtained from Eqs. (30a)
and (30b) by setting all derivatives with respect to time
and the J-coordinate direction to zero. Definitions for the
contravariant velocity components (U and 1) as well as
all metric quantiues can be obtained from Egs. (31a) and
(31b) by making similar simplifications. The spatial dis-
cretization scheme 1s given by

Ox fie 1iag (Su.‘lx,yw . =0

where d; and 4, are backward. first-difference operators
defined by

S:' i =0y —Uhioy ), 3,,( Yoy =0y — Oij-vs (38)

and the f and g fluxes are defined by
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Computation of the above individual fluxes requires
values of the density, the contravariant velocity compo-
nents (LU" and V), and the determinant of the transforma-
tion Jacobian J. which, in turn, require derivatives of x,
v and ¢ with respect to ¢ and 5. These computations are
all performed at cell centers, ie., at i+ 1/2.j+ 172, by
using (for example)

f;+ 172
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The above spatial discretization scheme is very compact
and requires only a single density evaluation per grid
point. However, this scheme has a tendency to produce
oscillatory solutions in which the i +j odd points are
decoupled from the i + j even points. This situation can
be corrected by adding a suitable recoupling term A of

the form

Ee o u? y2
Aij = — 5056, B(Ax -5t A -

2 J\ as a i+12.5+1:2
—S‘iard)i.h

where the parameter ¢ is a constant usually set equal to 4
and &, and 9, are forward, first-difference operators
defined similarly to the backward operators in Eq. (38).
The resulting scheme becomes

Oefieviag + Onijeri2 + Ay =0

Addition of this new term recouples the odd and even
points and represents a suitable spatial differencing
scheme for subsonic regions of flow.

This scheme is stabilized in supersonic regions of flow
by the explicit addition of artificial viscosity terms given
by

A v P

P, = LU + UVS.8,br,.
Ju* ’

N vp oo .

Qi = =—=(UV:48, + V3,00

Ju

where the switching function v is defined by

M:
V= max(O, I — M2>’

\

and the operators dy, é,, é;:, and d,, are first and second

S5

central-difference operators defined by (for example)
= {)i-1k

=200 + i

(3:( )is = %[( et
5::( )i,j =()- 1.

The M. parameter used above is a user-specified critical
Mach number, defined in such a way that the spatial
differencing scheme uses the subsonic scheme for values
of local Mach number below M, and the supersonic
scheme for values of the local Mach number above M_.
In other words, the transition from central to upwind
does not necessarily take place at the sonic line. Note that
M. < 1 for stability.
The final spatial differencing scheme is given by

Os(fiviag + Piving)+ 5,,(!11,]»1 2+ Qe a)

+ 4, =0 (39)
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where the P and Q terms are defined by

jP,,. Uiiray >0,

P.+ v Uisrng < 0,

) _ {Qi,j-
i j+1:2 _ QAE“H]’

A typical result computed with the above formulation 1s
compared with experiment in Fig. 14. The geometry used
in this comparison involves a wing/fuselage configura-
tion with a supercritical wing. The wing guarter-chord
sweep is 257, the wing aspect ratio is 8.0 and the thick-
ness-to-chord ratio is 0.12. The numerical results have
been computed using the FLO30 computer code modi-
fied with an integral boundary layer correction proced-
ure, which models the wing boundary layer thickness, the
wake displacement thickness and the wake curva-
ture (see Street [97]). The flow conditions for this case
are M, = 0.819, % = 1.96°, and Re; = 6 x 10°, where & is
the mean wing chord, and the experimental results are
from Hinson and Burdges [102]. Note that the numerical
results, including the shock strength and position, are in
excellent agreement with experiment at all three span
stations displayed.

Additional full potential flow solvers with three-
dimensional capabilities include the codes of Chattot
et al. [103]. Eberle [104] and Chen and Caughey [105].
The first two codes are capable of simulating the flow
about isolated wing geometries, and the latter code is
capable of simulating the flow about axisymmetric inlets

g
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Fig. 14. Wing surface pressure coefficient distributions for
a \xmg’fucelage configuration, M, =0.819, x=196".
Re: = 6 x 10°, taken from Street [97).

at angle of attack with and without center bodies. All
three of these codes utilize the SLOR iteration scheme,
although the first code also has an approximate factoriz-
ation (AF} option (which is discussed in Section 3.4). All
three of these codes solve the conservative form of the full
potential equation, although the first and third codes also
have independent nonconservative options.

3.3.2. Artificial density schemes

Another type of spatial discretization scheme for the
full potential equation written in conservative form is the
artificial density scheme. This discretization scheme has
been independently developed in several different forms
by Eberle [104]. Holst and Ballhaus [106] and Hafez
et al. [107]. These approaches, although not identical,
have certain similarities which can be attributed to the
earlier work of Jameson [92]. Jameson’s work is charac-
terized by a scheme with an explicitly added artificial
viscosity term [see Egs. (39) and (40)]. The artificial
viscosity term is designed to provide an upwind bias for
supersonic regions of flow, but does not affect the central-
ly differenced scheme in subsonic regions. The artificial
density scheme uses this approach with one basic simpli-
fication: the upwind bias is accomplished by an upwind
evaluation of the density. The three procedures compute
this upwind density quantity in different ways.

In the procedure of Holst and Ballhaus [106] the
finite-difference approximation for the full potential
equation written in two-dimensional curvilinear coordi-
nates [see Eq. (37)] is given by

. (U - [V
5{9—) + o‘,,(L) -0, (1)
J v J Jij+1n

where the density coefficients p and p are defined by
Pivizg =L = pliviag + Vie125Pi+r+ 1120 {42a)
Pijeriz =L = p)ije12 + Vij+r2Pijrs=12 (42b)

The r and s subscripts used above control the upwind
direction of the density coefficients and are defined by

{+1, Uierny <O {+1. V12 <0,
)y = S =
~1 Uiiyn,; >0, —1 Vieia >0,

(42c¢)

The switching or transition function v depends on the
local Mach number M, ; and the flow direction and is
defined by (e.g.. looking at only the {-coordinate direc-
tion})

jmax[(Mﬁj - 1)C, 0], Uie1a; >0

5 ‘ (42d
[max[(MZ ;= 1)C,0]. Ui-ya; <0,

Vi-u2g =
where the quantity C is a user-specified constant usually
set to a value between 1 and 2

The spatial differencing scheme described by Egs. {41),
(42a)-(42d} provides an upwind influence in supersonic
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regions without the explicit addition of an artificial vis-
cosity term. Instead. the stabilizing upwind influence is
produced by the upwind evaluation of the density in an
otherwise centrally differenced scheme. This approach is
significant because it simplifies the technique for includ-
ing an upwind influence into the residual operator. As
with the Jameson-Caughey finite-volume scheme [see
Egs. (39} and (40)], the artificial density approach closely
approximates the effects of a rotated differencing scheme.
This aspect contributes to the stability and rehability of
the overall algorithm and allows computations of many
difficult strong-shock cases.

Another variation of the artificial density spatial differ-
encing scheme has been presented by Hafez et al. [107].
In this scheme, which is sometimes called the artificial
compressibility scheme, the density coefficients in both
coordinate directions are defined by

Pig = Poy — vij(psAs) (43a)
where
U\ - Uy -
(,p\AS)i.j = (_) 5pr.\' + (—) ()va.\" [43b)
g /i /i

The double-arrow notation indicates a first-order differ-
ence, always chosen to be in the upwind direction; s is the
local streamwise coordinate direction; and v is a switch-
ing function defined similarly to Eq. {42d).

Many researchers have used one of the artificial den-
sity spatial discretization approaches mentioned above
because of the simple, reliable way in which the super-
sonic region is stabilized. A few of these applications
include Wong and Hafez [108] for airfoil computations;
Farrell and Adamczyk [109] Akay and Ecer [110] and
Deconinck and Hirsch [111] for cascade computations;
Shankar [112] for supersonic space marching problems;
Green and South [113] for axisymmetric computations;
Eberle [114,115] for a variety of different applications;
Steger and Caradonna [116] and Goorjian [117] for
unsteady computations: Ecer and Spyropoulos [118] for
wing-body computations: Neel [119] for wing computa-
tions; and Holst and Thomas [120] and Holst [121,122
for wing and wing/body computations.

3.3.3. Flux upwind schemes

Another type of supersonic flow stabilization method,
similar to the artificial density approach, is the flux up-
wind scheme. This type of scheme has been reported by
Engquist and Osher [123], Goorjian and Van Buskirk
[124], Goorjian et al. [125], Boerstoel [126], Slooff
[127]. Osher et al. [128,129] and Hafez et al. [130]. The
basic idea is to evaluate the entire flux in the upwind
direction using a special construction that will produce
good shock capturing characteristics and smooth flow
gradients through the sonic line, i.e., less shock smearing
and no expansion shocks. There are several approaches

for this type of scheme. Following Van Leer [131] and
Slooff [127] and using a one-dimensional discretized
equation given by

) R _
(pd)x %I[(P“)H 12 = (pu)ioq2],
X

the Godunov and Engquist-Osher flux upwind schemes
are given by

(ﬁ)i-‘ 12 = pru* — max(A;~ 12. Al 12)  (Godunov),

(Puir12 = put — A7 |5 — ALy (Engquist-Osher),

where
AF _ j[)*”* —(puli-yz iy > u*,
TN 0 ifu s <u
L =172 ~,
_ 0 H sy > u?,
i1 = - . . w
pfuF = (pu)ir1n Huiy o < u™

In the above equations p* and u* are sonic values of the
density and speed, respectively, and the overbar quantit-
ies represent the upwind evaluated fluxes. Both of these
schemes produce standard discretizations in regions
away from sonic lines and shock waves. At sonic lines
and shock waves these schemes differ from standard
schemes and are designed to produce smooth solutions
through sonic lines and sharp, monotonic shock waves.
The only difference in the above two schemes is in the
shock point operator. An additional example of the flux
upwind scheme derived from the approach described in
Osher et al. [129] is presented in Section 3.10 in the
context of a finite element method.

Results comparing a number of supersonic stabiliz-
ation schemes including both artificial density and flux
upwind schemes are presented and compared in Habashi
and Hafez [132], Volpe and Jameson [133] and Dulik-
ravich [134]. For several applications involving weak
shock waves the flux upwind scheme is superior in shock
capturing sharpness. For stronger transonic shocks the
two approaches produce similar results. For convergence
reliability and efficiency the two approaches (when using
the same iteration scheme) are also similar.

3.3.4. Entropy and vorticity corrections

An interesting characteristic associated with the con-
servative full potential equation spatial-discretization
scheme is the ability to add entropy corrections at shock
waves. Because of the isentropic and irrotational approx-
imations associated with all traditional potential formu-
lations, shock wave capture 1s accurate only for weak
shock waves (see discussion in Section 2.9). As the shock
wave strength increases the error increases. Several differ-
ent entropy correction procedures designed to approxim-
ately correct this problem are available including the
techniques of Hafez and Lovell [135,136] and Klopfer



T.L. Holst { Progress in Aerospace Sciences 36 (2000) 1-61

and Nixon [137]. The basic idea involved in this ap-
proach is to use a nonisentropic expression for the den-
sity given by (see Bridgeman et al. [138] for a derivation)
£ = prent >,

where pi... 15 the traditional isentropic density computed
from (for example) Eq. (30b), R is the real gas constant,
and As is the increase in entropy across the shock wave
given by [32]

As 1 IH[Z";M%—(;'—I)}

R =1 K

I (v + DMi
~—1 (v— M3 +2 ]

:

In the above equation M, is the Mach number just
upstream of the shock wave. In this implementation the
flow is assumed to be steady, and the shock wave is
assumed to be normal to the local velocity vector. Be-
cause the entropy convects with the flow, its material
derivative is zero everywhere except at a shock wave.
Thus, the full potential equation in its traditional isen-
tropic form can be used everywhere except at shock
waves (see Bridgeman et al. [138]). At the shock wave,
the density is modified using the nonisentropic density
formula. Identification of the shock location is simply
achieved (for normal shocks) by finding each grid cell
where the Mach number decreases through one in the
positive flow direction. Hafez and Lovell [136] present
an approach for applying an entropy correction to ob-
lique shocks, which requires identification of the shock
location and its angle with the local flow direction. How-
ever, difficulty in numerically identifying these quantities,
coupled with the fact that entropy corrections for oblique
shocks are not as important as for normal shocks, has
generally dissuaded researchers from attempting entropy
corrections for oblique shocks. Despite the steady flow
assumption, this approach has been successfully applied
to unsteady problems by assuming quasi-steady flow. It
should be noted that the above approach assumes no
correction for vorticity. A simple vorticity correction
model consistent with the above entropy correction
model is also possible. Two examples are presented in
Kinney and Hafez [139] and Batina [140].

Numerous applications utilizing the entropy (and vor-
ticity) correction procedure described above (or a vari-
ation thereof) have been presented in the literature for
extending the range of applicability of various potential
formulations. Examples of these applications include
Siclari and Visich [141] and Siclari and Rubel [142] for
supersonic marching solutions, Fuglsang and Williams
[143] and Batina [140] for solutions of the unsteady
TSD equation, Whitlow [144] for airfoil calculations,
Bridgeman et al. [138,145] and Chen and Bridgeman
[146] for unsteady helicopter rotor applications, Zi-giang

(%)
N

and Xue-Song [46] for airfoil, wing and wing-body con-
figurations, and Kinney and Hafez [139] for transonic
wing computations. A numerical result showing differ-
ences between the traditional isentropic full potential
approach and the same computation with an entropy
correction is presented in Section 3.9. The above entropy
{(and vorticity) correction procedure allows the poten-
tial equation to compute flows with stronger shock
waves and produce results that approximate the Euler
equations.

3.3.3. Freestream consistency conditions

Grid generated irregularities, such as mapping singu-
larities, rapid stretching, cell skewness, or grid coarse-
ness, exist in many applications, and cause accuracy
difficulties for most spatial discretization schemes, espe-
cially finite-difference schemes. ldeally. a stable flow-sol-
ver algorithm, which can handle all of the above-men-
tioned irregularities, yet provide uniform accuracy over
the entire grid, is desired. In a spatial discretization
formulation that utilizes the general mapping procedure
described in Section 2.8, it can be shown that if the metric
differencing is implemented properly, the truncation
error associated with a freestream distribution of the
dependent variable is zero. That is, freestream is admitted
as a solution to the finite-difference equations. If the
truncation error associated with freestream flow is zero,
then accuracy for any type of solution will be improved.
This type of procedure is addressed in Pulliam and Steger
[147] for the Euler equations, but is not used because of
the small improvements in accuracy obtained on smooth
grids. Thomas and Lombard [148] and Hindman [149]
also study geometricaily induced errors associated with
metric differencing and find that certain procedures are
better than others.

All of the above work is associated with the Euler
equations. Chattot et al. [103] present a spatial differenc-
ing scheme which provides perfect freestream capture for
the full potential equation. However. the full potential
equation is not written in conservative form. ie., the
metrics are outside the main flux differentiation. On
smooth grids, where metric variation is small, this formu-
lation behaves like conservative form. Flores et al. [150]
present a freestream-preserving, spatial differencing
scheme for the conservative full potential equation writ-
ten in general curvilinear coordinates [see Egs. (30a) and
{30b) and the associated metric definitions]. Unlike the
Euler equation scheme presented in Pulliam and Steger
[147] which produces perfect freestream capture with
a single consistency condition, the full potential equation
requires three conditions. The first condition is asso-
ciated with the density calculation and is developed as
follows (assuming two-dimensional steady flow). The
density can be written solely as a function of fluid speed.
Thus, the numerical prediction of freestream density re-
quires the prediction of the freestream fluid speed. The
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fluid speed can be written as (using the physical domain
metrics from Section 2.8)

qz = J:[{J‘”(f); - -":d’u): + (=X, 0 + xéd)n):]-

Analytically speaking this expression reduces to g2 for
a freestream distribution of ¢ in a trivial fashion. The key
question is: what is the value of ¢ for a freestream distri-
bution of ¢ when difference formulas are used to replace
all derivatives? The numerical evaluation of this expres-
sion reduces to ¢2 . if the difference operators used for all
-differences involving x, y and ¢ are the same, and if the
difference operators used for all n-differences involving x,
v and ¢ are the same. This can easily be verified by
substituting difference operators for all derivatives into
the above equation and then using the exact freestream
¢ distribution to simplify. This is the first freestream
consistency condition.

The second and third consistency conditions are asso-
ciated with the flux calculation. For freestream flow the
numerically computed density is a constant (assuming
the density consistency condition is satisfied). Thus, the
full potential equation can be written as

Ly + 00, ("de)x + ¢,
sarr R el S T A — 0_
( J > T \ J ) '

n
where ¢, and ¢, are given by

¢ =J00y¢: =y, =u ¢, = J(—x,¢: + X)) =0

If the difference operators for the &-differences involving
X, v and ¢ in each flux computation are the same, and if
the difference operators for all y-differences involving x,
v and ¢ in each flux computation are the same, respec-
tively, then the numerically evaluated values of ¢, and ¢,
{(with a freestream distribution of ¢) are equal to u, and
v, . This is the second freestream consistency condition.
Note that the first and second freestream consistency
conditions are the same providing the density and flux
computations are performed in the same locations. In
general they are not, and thus, these two freestream
consistency conditions must be considered as separate
conditions. As a consequence, the density and flux met-
rics must be computed and stored separately.

With ¢, = u, and ¢, = t,, the full potential equation
can be further simplified to
Uy (Yy: — ¥Yoy) + U Xy — Xgy) =0

s

For this equation to be satisfied numerically, the finite-
difference operators used for the flux metrics must com-
mute with the finite-difference operators used for the flux
derivatives. This is the third freestream consistency con-
dition. This last condition is the same condition present-
ed in Pulliam and Steger {147] and is required (by itself)
10 achieve perfect freestream capture for the Euler equa-
tions. Extension of these metric-differencing require-

ments to three dimensions for the full potential equation
1s straightforward but tedious (see Flores et al. [150] or
Thomas and Holst [151]). An additional paper address-
ing accurate three-dimensional metric evaluation for the
full potential equation using a finite-difference approach
is Jiang and Cai [152].

3.4. Approximate factorization iteration schemes

The vast majority of all full potential solvers so far
presented have utilized the SLOR iteration scheme.
Other iteration schemes, including approximate factoriz-
ation (AF) and multi-grid schemes, have supernor conver-
gence characteristics, i.e., solutions are obtained with
fewer iterations and less computer time. Approximate
factorization iteration schemes can be examined by
considering the following general two-level iteration
procedure

NC"+wLe" =0, (44)

where C"( = ¢"*' — ¢") is the correction, L" is the re-
sidual, which is a measure of how well the discretized
approximation to the governing PDE is satisfied by the
nth iterate of the dependent variable ¢, and w is a relax-
ation parameter. The iteration scheme given by Eq. (44)
can be considered to be an iteration in pseudotime, where
the n superscript indicates the time-step level of the
solution, i.e., {)"*? — ()" ~ At(),. The operator N deter-
mines the type of iterative procedure, and therefore,
determines the rate at which the solution procedure
converges.

Classical successive over-relaxation (SOR) or SLOR
schemes effectively use only a portion of the L operator in
forming the N operator. As a consequence, the iteration
scheme is relatively simple, but the convergence rate is
relatively slow. In the AF approach, the philosophy is to
choose a representation for N that closely approximates
L. This, in theory, will produce a scheme with good
convergence characteristics. The procedure for obtaining
N consists of two steps: (1) linearize L and (2) factor the
linearized result. There are usually two factors for two-
dimensional algorithms and three factors for three-di-
mensional algorithms. The resulting scheme retains the
simplicity of requiring only narrow-banded scalar matrix
operations, The effects of both the factorization error
terms and the linearization are removed from the solu-
tion simultaneously by means of the iteration scheme.
Because each grid point is influenced by every other grid
point during each iteration, much faster convergence is
obtained.

Several early examples of AF schemes can be found in
Peaceman and Rachford [153], Douglas [154]. Douglas
and Gunn [155] and Yanenko [156]. In these pioneering
applications different forms of the AF scheme are
introduced and applied to purely parabolic or elliptic
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equations. Additional classical information regarding AF
schemes can be found in Mitchell [27]. The first applica-
tion of the AF approach to transonic flows governed by
potential formulations is the work of Ballhaus and Steger
[1]. Since this work many calculations using AF iteration
schemes have been obtained including Goorjian [117].
Steger and Caradonna [116] and Sankar and Tassa
[157] for time-accurate full potential applications; Bal-
lhaus et al. [158] for steady two-dimensional TSD
computations; Holst and Ballhaus [106], Holst [159].
Chattot and Coulombeix [160], Deconinck and Hirsch
[111], Roach and Sankar [161] and Baker [162] for
steady two-dimensional full potential computations; and
Chattot [163], Baker and Forsey [164], Sankar et al.
[165] and Holst and Thomas [120] for three-dimen-
sional full potential computations.

Two widely used AF schemes are now presented in
more detail. In the interest of brevity only two-dimen-
sional versions will be considered, both designed to
solve the conservative full potential equation given by
Eqs. (37). The first scheme is a reformulation of the
Peaceman-Rachford alternating direction implicit (ADI)
scheme and can be expressed by choosing N [from
Eq. (44)] as follows:

L
NCY, = — (0 = 8 Aol = 0,4,0,)CL, 43)
o

where = is an acceleration parameter (to be discussed
shortly) and A; and A4; are defined by

pA, pA
A,-:(ﬁ—‘) , A,:(”—i> ‘ (46)
\ ‘] = 1/2. \ J P12

In the above expressions, the density coefficients. p and p.
are defined by Egs. (42a) and (42b) and A4,. 4> and J are
metric quantities defined similarly to the metrics in Egs.
(31b). The ADT scheme represented by Eq. (45) is imple-
mented in a two-sweep format given by

Sweep 1:

(x = B Aid)f = 2oLl (47a)
Sweep 2:

(2 — B, A4;0,)CT; = £ (47b)

In Egs. (47a) and (47b), /i 1s an intermediate result stored
over the entire finite-difference grid and the residual L ;
is defined by Eq. (41). Sweep ! consists of a set of tridiag-
onal matrix equations along the &-coordinate direction,
and sweep 2 consists of a set of tridiagonal matrix equa-
tions along the y-coordinate direction. The construction
of this ADI scheme does not automatically provide the
necessary ¢, temporal damping required to stabilize
supersonic flow regions. However, this type of term can
be included by adding

F AylVisloy

F BAU 6 and

+2
~

inside the parentheses of the first and second sweeps,
respectively. The double-arrow notation on these oper-
ators indicates that the difference direction is always
upwind, and the sign is chosen so as to increase the
magnitude of the matrix diagonal coefficient. The con-
travariant velocity component scaling used in the above
expressions provides a smooth transition from forward
to backward differencing when the flow direction cha-
nges sign. The f; and f, coefficients are constants speci-
fied by the user.

The ADI scheme presented above is stable providing
0<w<?2 and % 2 0. Because the only condition for
stability on the z parameter, which behaves like the
inverse of the physical time step, is that it be positive, the
ADI scheme is said to have unconditional linear stability,
as expected for a fully implicit scheme. The best strategy
for obtaining rapid convergence is to use a repeating
sequence of o values. The small values reduce the low-
frequency errors and the large values act as a smoothing
mechanism, and thus, reduce the high-frequency errors.
A suitable sequence is given by

o k-DiM-1)
zhle(_> N k—:l.z,u..’]v[, (48)

Iy

where M is the number of elements in the sequence and
%, and 2y are the sequence endpoints corresponding to
the low- and high-frequency limits. respectively. In prac-
tice, 7, and xy are often “optimized” by trial-and-error
numerical experimentation. This typically is performed
only once for each code and grid size, as opumal values of
%, and ay do not strongly depend on solution character-
istics. For more information on the optimal choice of
these parameters, the interested reader is referred to
Catherall [166] where a detailed analysis is performed
for several AF iteration schemes.

Faster convergence can be obtained with the ADI
iteration algorithm. An estimate for the number of iter-
ations N, required to drop the error by N, orders of
magnitude for solving Laplace’s equation {with optimal
acceleration parameters) is given by [26]

A
Niw ~ — 0.645Nc]og<7). (49)

where A is the grid spacing used in the computation.
Comparing this estimate with those established in Egs.
(35) and (36) for the line Gauss-Seidel and SLOR iter-
ation schemes, respectively, it is easy to see that the ADI
scheme is superior in convergence efficiency, being as
much as an order of magnitude faster for fine grid com-
putations.

The second AF scheme described is the so-called AF2
scheme, which was first studied in Ballhaus and Steger
[1]. This iteration algorithm was subsequently used to
solve the steady TSD equation by Ballhaus et al. [158]
and the conservative full potential equation by Holst and
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Balthaus [106]. The AF2 fully implicit scheme can be
expressed by choosing the N-operator of Eq. (44) as
follows:

Lo )
NCl = — =2 — 3: 420 — 3,4,;5,)CL. (50)
X

where (as with the ADI scheme) 4; and A; are defined by
Eqgs. (46) and z is an acceleration parameter defined by
Eq. (48). This scheme is implemented in a two-sweep
format given by

Sweep 1

(2 — 0 4,0 = 2wldl, (51a)
Sweep 2

(28 — 3,4,;8,0C1; = fis. (51b)

In Egs.{51a) and (51b), " is an intermediate result stored
over the entire finite-difference grid and the residual Lo}
1s defined by Eq. (41). Sweep 1 consists of a set of bidiag-
onal matrix equations along the ¢-coordinate direction,
and sweep 2 consists of a set of tridiagonal matrix equa-
tions along the p-coordinate direction. With the AF2
factorization, the {-difference approximation is split be-
tween the two sweeps. This generates a ¢y -type term,
which is useful to the iteration scheme in supersonic flow
regions as time-like dissipation. The split ¢ term also
places a sweep direction restriction on both sweeps,
namely, in the negative & direction for the first sweep
[Eq. (51a)]. and in the positive ¢ direction for the second
sweep [Eq. (51b)]. Flow direction imposes no sweep
direction limitations on either of the two sweeps.

For curvilinear grid applications when the ¢ direction
1s not aligned with the local flow direction, additional
temporal damping terms aligned with the n-coordinate
direction can be included by adding F x[f?f,, inside the
parentheses of sweep 2. Again. the double arrow notation
i1s used to indicate that the difference direction must
always be upwind, and the sign is chosen so as to increase
the magnitude of the matrix diagonal coefficient. The
parameter [/ s a user-specified constant. which only
needs to be activated in supersonic regions of flow when
the flow direction is (to a significant extent) along the
n direction.

Another form of the AF2 scheme that splits the 5 dif-
ference operator between the two factors is possible (see
for example the AF2 variation in Holst [159]}. This type
of AF2 scheme is attractive for some applications involv-
ing general curvilinear grids, e.g., airfoil or wing compu-
tations using “O” grid topologies. More recent imple-
mentations of the AF2 scheme for transonic potential
flow computations include South and Hafez [167] for
airfoil computations: Vadyak and Atta [168] for three-
dimensional nacelle analysis: Jialin [169] for three-di-
mensional axial-flow compressor flows; Holst [122] for
chimera zonal grid applications: and Cosentino and

Holst [170], Cheung and Holst [171], de Mattos [172]
and de Mattos and Wagner [173] for analysis and design
of transonic wings. More on the use of transonic poten-
tial formulations in numerical optimization and design
applications will be presented in Section 3.10.

3.5. Convergence characteristics of SLOR. ADI and AF2

Numerical results comparing the convergence charac-
teristics of the two fully implicit algorithms described
above (ADI and AF2) with the classical SLOR iteration
algorithm are now presented. All three iteration schemes
are applied to the same artificial-density spatial-differ-
encing scheme for the conservative form of the full poten-
tial equation. A two-dimensional, 10%-thick, circular-
arc airfoil with small-disturbance boundary conditions is
used as a test case. The finite-difference grid is Cartesian
with variable spacing in both the x and y directions.
Both subcritical and supercritical cases are considered
(M, =0.7 and 0.84). Pressure coefficient distributions
for these two cases are displayed in Fig. 15. Note the
perfect symmetry associated with the subcritical case and
the existence of a moderate strength shock at about §0%
of chord for the supercritical case. For more details about
these calculations see Holst and Ballhaus [106].

Convergence characteristics for the subcritical case are
displayed in Fig. 16. All of the convergence parameters
for each scheme have been selected by a trial-and-error
optimization process. Based on a six-order-of-magnitude
reduction in the maximum residual and in terms of iter-
ation count, the ADI scheme is about twice as fast as AF2
and about 16 times faster than SLOR. However, the ADI
and AF2 schemes take about 50 and 30% more CPU
time per iteration than SLOR, respectively, which should
be considered when speed ratios based on the total
amount of computational work are desired. Convergence
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Fig. 15. Pressure coefficient distributions from subcritical
(M, = 0.7) and supcrcritical (M., = 0.84) flow computations
about a [0%-thick circular-arc airfoil, taken from Folst and
Ballhaus [106].
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Fig. 16. Maximum residual convergence history comparison for
the subcritical case. M, = 0.7, taken from Holst and Ballhaus
[106].
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Fig. 17. Maximum residual convergence history comparison for
the supercritical case, M, = 0.84. taken from Holst and Bal-
lhaus [106].

characteristics for the supercritical case are displayed in
Fig. 17. Again, the convergence parameters have been
optimized by a trial-and-error process. Based on a six-
order-of-magnitude reduction in the maximum residual
and in terms of iteration count, AF2 is slightly more than
twice as fast as ADI, and about 11 times faster than
SLOR. The number of supersonic points (NSP) plotted
versus iteration number for the supercritical case is
shown in Fig. 18. The AF2, ADI and SLOR schemes
reach the final value of NSP in 29, 103 and 320 iterations,
respectively.

The AF2 scheme was relatively consistent in terms of
convergence speed for both cases. The ADI iteration
scheme. on the other hand, displayed remarkable speed
for the subcritical case, but was a disappointment for the
supersonic case. This Is because the ¢4 -type error term
produced by the AF2 factorization is more suitable for
supersonic regions than the ¢ -type error term resulting
from the ADI factorization. In fact. the ¢ -type error
term has been shown to be destabilizing in the supersonic
region [81].
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Fig. 18. Development of the supersonic region, M, = 0.84,
taken from Holst and Ballhaus [106].
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Fig. 19. Maximum RMS error convergence history comparison
for the supercritical case, M, = 0.84. taken from Holst and
Ballhaus [106].

The convergence histories displaved above involve
plotting residual versus iteration. Another more appro-
priate means of studying an iteration scheme's conver-
gence properties is to look at error versus iteration. Such
a plotis displayed in Fig. 19. In this case the error plotted
on the vertical axis is the RMS error in the surface
pressure coefficient, which is computed from

M 102
Ejns = ]imz (cp ~ Z'p)b:’ )

where ¢% is the surface pressure coefficient at the ith grid
point and the nth iteration, ¢, is the surface-pressure
coefficient at the ith grid point taken from the tightly
converged solution, and N1 is the total number of surface
grid points. By comparing the residual history curves
(Fig. 17) with the error history curves (Fig. 19), it can be
seen that reducing the maximum residual by a fixed
amount (for example by two orders of magnitude) for the
AF2 and SLOR schemes, does not result in equal levels of
error reduction. The SLOR residual drops very rapidly
initially and then levels off. The SLOR RMS error drops
continuously but very gradually. Therefore, at the “knee”
in the SLOR residual history curve. even though the
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residual has dropped by about three orders of magnitude,
the actual RMS error has dropped only one order of
magnitude. In contrast, both the maximum residual and
RMS error results for the ADI and AF2 schemes are
nearly straight lines with about the same slopes.

This behavior is the result of two factors (Holst and
Ballhaus [106]). First. the (opumized) ADI and AF2
schemes treat all error components equally well (approx-
imately), whereas the SLOR scheme (even in optimal
form) performs efficiently on only the high-frequency
error components, L.e., it is a good smoothing algorithm.
Second, it can be shown that the residual is a weighted
sum of all the errors present in a solution, but with
weighting factors heavily biased toward the highest-fre-
quency errors. Thus. in the early stages of convergence as
SLOR is smoothing the high-frequency errors typically
caused by an impulsively started freestream initial condi-
tion, the residual drops rapidly. while the error, paced by
low-frequency components, drops slowly. As a result of
this behavior, the maximum residual should never be
used to compare the convergence properties of two dis-
similar iteration schemes. The RMS error is much better
suited for this purpose. In practice. using the maximum
residual to monitor convergence is the most convenient
method (since error is unknown). However, the conver-
gence criterion based on residual should be adjusted
(by experience) in accordance with the solution proced-
ure in use.

3.6. Mulrgrid iteration schemes

The multigrid scheme was originally developed for
solving elliptic equations, but has subsequently been ap-
plied to a much wider range of problems, including
hyperbolic problems with shocks, time-accurate prob-
lems, and problems of mixed type such as those asso-
ciated with transonic flow. This scheme is actually a
convergence acceleration technique and requires a base
iteration scheme, e.g.. SOR, SLOR, or AF. Multigrid-like
schemes have existed for quite some time, having been
first introduced by Fedorenko [174]. Since then, several
authors have analyzed the technique, including Bak-
hvalov [175]. Nicolaides [176] and Hackbusch [177].
The most significant aspect of a multigrid scheme is fast
convergence. Fast convergence is produced by using a se-
quence of grids ranging from very coarse to fine. Each
grid is used to eliminate one small range of errors in the
error frequency spectrum, namely the errors of highest-
frequency supported on each grid. Many relaxation
schemes exist that work well on high-frequency errors,
e.g.. most AF schemes with properly chosen acceleration
parameters. A suitable relaxation scheme is used on each
mesh to remove the high-frequency error. A desirable
aspect of this approach is that the high-frequency error
on the coarsest grid is actually the lowest-frequency error
existing in the problem. Because this usually troublesome

low-frequency error is efficiently dealt with on a coarse
grid, very little computational work is expended in re-
moving it from the solution. Thus, a tremendous conver-
gence rate enhancement is obtained.

Implementation of a typical multigrid scheme is now
described in general terms. Suppose a solution is desired
to the following equation:

L'¢ =1

where L" is a typical linear difference operator which
approximates a differential operator L on a grid asso-
ciated with the grid spacing 4. The quantity fcontains the
problem boundary conditions. Let

¢ =u-+r,

where u is an approximation to ¢ and v represents an
error. Therefore, as the iteration scheme converges, u — ¢
and v — 0. The basic multigrid scheme can be expressed
by

L3 + 1L — ) = 0,

where L?" is a finite-difference operator which approxim-
ates L on a grid associated with the grid spacing 2h,
instead of A, i.e., twice as coarse as the original grid. The
operator [" is a restriction or averaging operator which
transfers values of the residual (L*u — /) from the fine
grid to the coarse grid. After the coarse grid corrections
v are obtained, they are transferred back to the fine grid
using

u" = u + e,

where I%, is an interpolation operator. The process can
continue to coarser grids so that ultimately just several
grid cell widths span the entire domain of interest.

Brandt [178,179] presents early numerical applica-
tions of the multigrid scheme. In the latter reference
a good historical review of carly multigrid schemes is
presented. The first use of the multigrid scheme for trans-
onic calculations is presented by South and Brandt
[180]. In this study, numerical solutions of the TSD
potential equation for non-lifting airfoils are obtained.
The multigrid-enhanced-SLOR scheme 1s found to be
a factor of three faster than an optimized SLOR scheme
on uniform grids and a factor of two faster on stretched
grids. A primary difficulty involved the existence of
limit-cycle oscillations between several grids, thus inhibi-
ting convergence. This problem seemed to be the result of
insufficient smoothing of the high-frequency errors on
one grid before passing to the next coarser grid. South
and Brandt concluded that the SLOR base algorithm
used in their multigrid implementation did not have
uniform smoothing properties in both directions, espe-
cially for highly-stretched grids and suggested the use of
an ADI-type scheme as the base algorithm.
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Another approach proposed by Arlinger [181] is to
refine or coarsen the grid in only one coordinate direc-
tion while doing line relaxation along the opposite direc-
tion. This technique produces convergence rate acceler-
ation but does not take full advantage of the multigrid
philosophy. Another successful implementation of multi-
arid to transonic ow is the work of Jameson [182]. In
this work. the two-dimensional full potential equation in
conservative form is solved using multigrid with an AF
base iteration scheme. The Jameson multigrid algorithm
uses a recursive approach. instead of the adaptive ap-
proach advocated by Brandt [178.179]. T the adaptive
multierid approach. the decision to proceed to the next
arid. either coarser or finer. is based on a convergence
rate criterion. If the solution residual is dropping slowly.
the iteration praceeds to coarser grids. If the solution
residual is dropping rapidly. the iteration proceeds to
finer grids. In the recursive approach. a single multigrid
cycle starts with a fine grid iteration. followed by an
iteration on the second finest grid, ete. This continues
until the coarsest grid is reached. Then the process is
reversed. starting with the coarsest grid and ending with
the second finest grid. Therefore. one multigrid cycle
consists of one iteration on the finest grid and two iter-
ations on every other grid. If a fine grid iteration is
defined as a unit of work. then one multigrid cycle. using
the recursive approach. requires about 13 work units
{for two-dimensional problems) plus interpolation
operations.

Computed transonic airfoil results produced by the
Jameson multigrid scheme are displayed in Figs. 20
and 21. The pressure coefficient distribution for this case
(an NACA 64A410 airfoil at M, =0.72 and » =07). is
displayed in Fig. 20. A moderate-strength shock exists at
about 60% of chord. Convergence histories for this case.
computed using different numbers of grids {from one
grid, Le. no multigrid. up to five grids) are shown in
Fig. 21. Notice that the maximum residual has been
reduced below 107 % (for the five-grid case). which corres-
ponds to an eight order-of-magnitude reduction. This is
achieved in just 29 muliigrid cycles (approximately 50
work units). The convergence rate parameter (CR). which
is defined as the mean reduction in the average residual
per unit of work. is also displaved in Fig. 21 for cach
convergence history curve. Increasing the number of
erids greatly improves the convergence rate.

Other ressarchers have used the multigrid algorithm to
solve the full potential equation in a variety ol applica-
tions including Fuchs [183]. Boerstoel [126]. Deconinck
and Hirsch [184] and Sankar [183] for two-dimensional
calculations: Arlinger [186] for axisymmetric calcu-
lations: Volpe [187] for two-element airfoil computa-
tions: McCarthy and Revhner [188] and Brown [189]
for  three-dimensional  engine-inlet  calculations:
Shmilovich and Caughev [190] and Cuaughey [191] for
three-dimensionad wing caleulations: Chen et al. [192]

—1.6 —
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Fig. 20. Converged airfoil pressure coefficient distribution ob-
tained from multierid code. tuken from Jameson [182].
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Fig. 21. Maximum residual convergence histories showing effect
of the number of grid levels on multigrid convergence. tuken
from lameson [ 1827

for wing-body calculations: Chen et al. [101] for fusel-
age-pylon-nacelle caleulations with and without power:
van der Vooren et al. [193] and van der Vooren and van
der Wees [194] for wing and wing-body computations
with special emphasis on accurate drag prediction: and
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Shmilovich and Caughey [195] for wing/body/tail com-
putations. The multigrid-based procedure of Shmilovich
[196] designed to solve general geometry inlets at inci-
dence and yaw is quite interesting. It consists of a base
SLOR scheme that alternates between the streamwise
and normal-like coordinate directions and contains a di-
rect/inverse boundary layer correction procedure due to
Cebeci et al. [197]. Several transonic flows with bound-
ary laver separation are presented that demonstrate the
method’s capabilities.

3.7, Other ireration schemes

Sankar and Tassa [157] have applied the strongly
implicit procedure (SIP) introduced by Stone [2] to the
numerical solution of the full potential equation for un-
steady transonic airfoil calculations. Additional steady
applications include those of Sankar et al. [198] for
transonic wing computations, Roach and Sankar [161]
for transonic cascade computations, and Sankar [185]
and Gordon and Arieh [199] for airfoil computations.
A multigrid-enhanced SIP approach is used in van der
Vooren et al. [193] and van der Vooren and van der
Wees [194] for wing and wing/body computations. In all
cases the SIP solution algorithm displaved good conver-
gence characteristics as a relaxation scheme. In addition,
the SIP algorithm has the ability to compute time-accu-
rate flow fields: see Malone and Sankar [200] for un-
steady airfoil computations and Sankar et al. [165] and
Sankar and Malone [201] for unsteady wing calcu-
lations.

South et al. [202] describe an algorithm called Zebra
I, which 1s highly parallelizable and requires about the
same number of iterations to converge as SLOR. This
algorithm is an explicit or point scheme that mimics
fuil-plane SOR. Iteration schemes that have superior
convergence properties. and thus produce solutions in
a minimal number of iterations, are available. A few
examples include the conjugate-gradient methods of
Bristeau et al. [203]. Glowinski et al. [204], Chattot and
Coulombeix [160] and Wong and Hafez [205] and the
minimum residual method of Wong and Hafez [206,108]
and Wong [207]. The work of Wong and Hafez [206]
provides an interesting discussion of iteration schemes
for solving the full potential equation. Results are pre-
sented for several schemes, including SLOR, two vari-
ations of the Zebra scheme, and conjugate-gradient
schemes with several types of preconditioning combined
with both SLOR and Zebra. These iteration schemes are
combined with two different spatial discretization
schemes including a finite-difference scheme and a finite-
element scheme. It is found that the combined iteration
schemes are superior to the standard SLOR scheme in
computational efficiency by as much as a factor of ten for
subcritical cases and by at least a factor of two for tough
transonic cases.
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3.8. Space marching schemes

Up to this point only schemes that are designed to
solve transonic flows with subsonic freestream Mach
numbers have been considered. Another class of prob-
lems equally amenable to full potential algorithms are
those with low supersonic freestream Mach numbers.
A central feature of this class of schemes is that the
solution is marched, i.e., without global iteration, from
upstream to downstream. Each cross-sectional plane
solution is transonic-flow-like in that both subsonic and
supersonic cross-flow Mach numbers may exist. Each
cross-flow plane is iterated until convergence. Then the
solution technique moves on to the next downstream
plane. Because there is no global iteration, these so-called
“space-marching” schemes are extremely efficient. For
the full potential formulation to be valid for supersonic
freestream flows, the resulting bow shock must be at-
tached, 1.e., blunt body problems are generally not in-
cluded, and the normal component of the bow-shock
Mach number must be at or below a value of about 1.3
{see Fig. 6). Thus, sharp, thin bodies at small angles of
attack are generally the target application. If the body is
thin enough, e.g., a five-degree cone, at a small enough
angle of attack, e.g., 10° or less, freestream Mach num-
bers at or above two can easily be accommodated. An-
other characteristic of this type of flow is the existence of
local pockets of subsonic flow. Such a problem requires
a hybrid marching-relaxation iteration scheme.

Early full potential equation marching algorithms are
described in Grossman [208], Grossman and Siclari
[209], Siclari [210], and Siclari and Visich [141]. In these
studies the nonconservative full potential equation is
solved using an SLOR-like algorithm in each cross-flow
plane. Grossman [208] and Siclari and Visich [141] use
a conical-flow assumption to reduce the problem to two
dimensions, i.e., transonic flow in the cross-flow plane. In
conical flow all flow variables are assumed constant
along “conical lines”, i.e., straight lines that pass through
the apex of the geometry. Thus, flow variable derivatives
with respect to the conical direction are zero. This com-
mon assumption has been used by others (Bradley et al.
[211] Sritharan and Seebass [212]) for solving the
conservative form of the full potential equation. This
approach, while retaining many features of three-
dimensional supersonic flow, has the limitation that only
conical-type bodies can be analyzed. The other methods
presented above [209,210] are more general, utilizing
a conformal-type mapping for grid generation in each
cross-sectional plane, and thus, are generally applicable
for nonconical geometries. The work in Siclari [210] and
Siclari and Visich [141] is interesting in that shock fitting
is utilized to accurately compute shock waves, both the
bow shock and the cross-flow shock. In Siclari and Visich
[141] the shock-jump conditions used in the shock-fit-
ting scheme are nonisentropic (see Section 3.3), and thus
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closely model the Euler equations. Results presented n
the above references include cones, elliptic cones, and
a simplified wing-body configuration. Good agreement
with experimental surface pressures is obtained, includ-
ing the capture of transonic-like cross-flow shock waves.
providing viscous effects are not important. Additional
applications involving more complete geometries include
Walkley and Smith [213] for fighter forebodies with and
without canopies and Rose et al. [214] for wing-body
configurations. Computational times for this type of
technique range from a few seconds to a minute on
moderate-speed desk-top-type computers.

A space marching approach for solving the conserva-
tive full potential equation is presented in Shankar [112]
and Shankar and Osher {215]. In this approach a locally
iterated approximate factorization scheme is used to ob-
tain each cross-low-plane solution. This scheme (pre-
sented now in more detail) is designed to solve the steady
full potential equation written in general coordinates
given by

pU oV pW
L L ) = 52
()~ (5 )+ (7 )= =

v —1 1y = 1)
p = {1 - ﬁ-.mﬁ(u& + Ve, + Wo: — 1‘;} .

(52b)

The above full potential governing equation 1s the same
as Eq. (30a) except all the time terms have been elimi-
nated. The above density relation is the same as Eq. (30b)
except the time terms have been eliminated and the
nondimensionalization is in terms of p, and g, instead
of p, and a,. The metric and contravariant velocity
component definitions given in Egs. (31a) and (31b) are
still valid for Egs. (52a) and (52b).

A suitable space marching scheme is developed as
follows. First, it is assumed that the ¢-coordinate direc-
tion is approximately aligned with the stream direction,
and thus, this direction is the marching direction. Given
a solution at i,i — 1., etc., the marching scheme is devised
to compute the solution at the (i + 1)st cross-sectional
surface. The first step in building such a marching scheme
is to linearize the first term in Eq. (52a). This is accomp-
lished by noting that pU/J = f(¢) and by using a Taylor
series as follows:
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Substitution of the above two expressions into Eq. (53)
vields after simplification the final linearization for the
&-direction flux given by

U U U\é
i = p_j +(2 Ay ——= :(‘
J Ji-a J /i T/ a /o
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where the only quantity in Eq. (54) that is evaluated at
i + 1isin A¢;. All other quantities are evaluated ati. The
first term in Eq. (52a) is discretized using a first-order
upwind formula given by

()= (). - (5]

A second-order discretization is also presented in
Shankar and Osher [215], but is not discussed here. The
nonlinearization given by Eq. (54) must be used for the
¢-direction fluxes at both i + | and {in order to maintain
conservative form.

To complete the formulation of the marching scheme,
linearizations for the other two terms in Eq. (32a) are
required. These linearizations are accomplished by using
a variation of the artificial density scheme discussed in
Section 3.3. For example, the second term in Eq. (32a) is
evaluated using

oV & pfAa ¢ ¢

Py 2 82 + A,— + Acs A
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The density coefficient / used in the above equation 1s
similar to the density coefficient defined in Egs. (42a) and
(42b). In this algorithm it is given by

Pi+ 1j+1/2k = (1 — v+ 2P 12
+ 4 aaPis amk F Pio i+ 2mah (56)
where m and v are defined by
{0 when V424 >0,
m=

1 when Vo104 <0,

A:aE\
Vijerzw =4 -3 -
14 i+ 12k

The quantity u appearing in the above equation is de-
fined by

{0 for (4, — V?ja®) > 0 elliptic crossflow,
o= 1 for{4, — V*a®) <0 hyperbolic crossfllow.

With this definition of x the density coefficient upwinding
is smoothly switched on or off based on whether the
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cross-flow direction is elliptic or hyperbolic. All the ¢-
derivatives appearing in Eq. (55 are centrally differenced.
The density values used in Eq. (36) are computed in two
wavs depending on the problem being solved. For coni-
cal flow problems. all density values are evaluated using
the previous marching plane I For nonconical flow prob-
lems, the density values are initialized to the density
values in the previous marching plane. and then updated
via local tteration as the solution at i+ 1 converges.
Treatment of the third term appearing in Eq. (32a) s
similar 1o the second term just discussed.

Next. the linearizations need to be combined to create
the fnal rteration scheme used to advance the solution
from marching plane 7 1o marching plane 7 = I After
combination. simphiication and factorization the follow-
ing iteration scheme s obtained

1+ e L,;IALP‘A“;
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Eq. 137) has the form
L,L-Ag = R.

where cach of the factors on the left-hand side represent
a set of scalar tridiagonal matrin equations. The inver-
sion of these muatrix cquations 1s achieved mn a two-step
sequence gnven by

LAP) = Re LAe = {Ag).

For the above marching scheme to be stable. it can be
shown that the following condition is required

This condition states that the marching direction must
remain supersonic for the marching scheme to be valid.
If the Muach number along the marching direction ever
drops below one. even though the total Mach number is
supersonic, the nurching scheme will be unstable. See
Shunkar and Osher [215] for a derivation of this
marching stability condition and additional discusston.

A typical result obtained with the above murching
scheme is eivenin Figs. 22 and 22 The geometry used for

this cuse i contcally cambered wing-body confligura-

wing-body configuration {taken from Shankar and Osher
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Fig. 23, Surface pressure coeflicient comparisons for o conically
cambered wing body geometry. A/, = 2. % = 781 and 10X2 .

(tuken from Shankar and Osher [215]

tion with a wing leading edge sweep of 57 . The grid for
a typical cross-sectional plane (generated using the Steger
and Sorenson [216] elliptic grid generation techniquet is
presented in Fig. 22. Surface pressure comparisons with
experiment (taken from Miller et al. [217] are shown in
Fig. 23, The results are presented for 2 = 7.81 and 10.82
and M, =2.0. Note that the computational-cxpern-
mental comparisons are excellent.
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Another possible characteristic of supersonic marching
problems, especially when the freestream Mach number
is not significantly above one, is the existence of
Jocal “pockets” of subsonic flow. Such a problem can be
solved using a hybrid marching-relaxation scheme. The
marching scheme is used as long as the marching direc-
tion is hyperbolic and a local relaxation scheme is used
when the marching direction is elliptic. Such a scheme is
presented in Shankar et al. {218]. The key difference
between the pure marching scheme presented above and
the hybrid scheme is in the handling of the first term in
Eq. (52a). For the hybrid scheme this term is simulated
using

()= (%) -(5)]
o (GG I S

where each flux is linearized using the approach de-
scribed above, and 6 is a switching parameter given by

{1 if A, — U%a* <0,
0 if 4, - U%¥a*>0.

When the local marching direction is subsonic the
scheme becomes a relaxation scheme, requiring a global
iteration over the entire subsonic region of flow. A sonic
solution is used as an initial condition for the solution
values required at i + 2. See Shankar et al. [218] for
additional details.

3.9. Time accurate schemes

All numerical schemes reviewed thus far have been
designed for steady flow applications. The purpose of this
section is to explore numerical schemes designed to solve
unsteady problems. There are many unsteady applica-
tions in the aerospace field including flutter computa-
tions, aircraft maneuver applications and rotorcraft rotor
design. Unsteady transonic flow has several interesting
aspects that are different from steady transonic flows. In
unsteady flow, the motion of a body, e.g.. pitching or
plunging of an airfoil or wing, strongly affects the result-
ant aerodynamic forces acting on that body, especially
when there are large shock wave excursions. Another
unique characteristic is the large phase diflerence that
may exist between the motion of an aerodynamic body
and the flow field response to that motion. This is prim-
arily due to the large time-scale variations that exist in
such flows. For more discussion of the physical aspects of
unsteady transonic flows as well as an early discussion of
time-accurate potential equation formulations, the inter-
ested reader is referred to Ballhaus and Bridgeman {219].
Additional information on the theoretical and numerical
solution aspects of such flows can be found in van der

Vooren and Schippers [220] or Sankar and Malone
[201].

Many formulational/algorithmic characteristics that
exist for steady potential equation applications also exist
for unsteady potential applications. For example, shock
wave capture is possible, but only for weak shocks; lifting
computations require the utilization of a vortex sheet,
across which the velocity potential is discontinuous; and
viscous effects, if important, can be added using bound-
ary layer correction techniques. There are other charac-
teristics that are different or have a different emphasis for
unsteady applications. For example, unsteady-flow far-
field boundary conditions are more sensitive to outer
boundary location. Depending on the physics of the
unsteady problem being solved and the length of time
integration, waves or disturbances can travel outward,
reflect back, and corrupt simulation accuracy. A simple
method for correciing this problem is to place the outer
boundary farther away, as much as an order of magni-
tude farther than in comparable steady flow problems.
Another remedy is to use special far-field boundary con-
ditions. There are two approaches; nonreflecting bound-
ary conditions or analytic far-field boundary conditions.
In the first approach, nonreflecting far-field boundary
conditions based on characteristic relations (see Engquist
and Majda [221,222]) are designed to absorb incoming
waves at the far-field boundary. Thus, these waves will
not reflect back to contaminate the inner solution. In the
second approach, an analytic function describing the
far-field unsteady potential solution in response to cer-
tain changes in lift is derived and used as a far-field
boundary condition (see Fung [223]). Either of these
approaches allows the outer boundary to be placed much
closer to the inner boundary, saving grid points, com-
puter memory and computer time. Example applications
utilizing these two far-field boundary condition ap-
proaches to solve unsteady problems can be found in
Kwak [224] and Fung [225].

Another characteristic of unsteady potential flow com-
putations is that the circulation, ie., the potential jump
across the wake cut, must be convected downstream in
a time-accurate fashion. This characteristic is required to
model the unsteady shedding of vorticity downstream of
any lifting surface. A relation of the form

Fi+ul, =0,

where T is the circulation and u is the local streamwise
velocity component, is used for this operation. This circu-
lation convection is the major unsteady influence for
Jow-frequency, sub-critical flows. A key approximation in
classical potential CFD methods is that I is constrained
to convect along a coordinate surface. This constraint
has historically resulted from transonic fixed-wing
applications for which potential CFD methods were
originally developed. For these applications the above
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convection model s a good simplification and causes little
error. See Steger and Caradonna [116] or van der Vooren
and Schippers [220] for more discussion on this point and
a derivation of the above circulation transport relation.

For time-accurate computations involving a forced
unsteadiness, e.g., a wing undergoing a pitch oscillation,
flow tangency boundary conditions at the wing surface
must take into account movement of the wing. This
1s accomplished using the boundary condition given by
Eg. (323

One last characteristic important for unsteady algo-
rithms is the use of conservative form. For steady flows
conservative form is important for having the correct
shock location and strength. For unsteady flows conser-
vative form is also important for having the correct shock
location and strength, but also important for having the
correct shock speed. A key aspect of this is associated
with the numerical algorithm’s time-term linearization.
Linearization for a steady algorithm is not as difficult as
for a ume-accurate scheme, because only spatial terms
need be considered, and the key issues are spatial accu-
racy and stability. In addition to these issues, time-accu-
rate schemes must also provide a time-term linearization,
which is stable, time accurate, and conservative. The
time-term linearization for the full potential equation is
difficult because the time term p, is a rather complex
function of the dependent variable ¢. Nevertheless, there
are schemes that overcome these difficulties and provide
fast and accurate solutions to unsteady aerodynamic
problems using potential formulations, as will be seen
shortly.

As with the steady flow case, the first successful imple-
mentations of unsteady transonic potential solvers are
associated with the TSD equation. Early two-dimen-
sional work in this area can be found in Ballhaus and
Steger [1]. Ballhaus and Goorjian [226], Rizzetta [227],
Rizzetta and Chin [228], Houwink and van der Vooren
[229]. Guruswamy and Yang [230]. Edwards et al
[231]. Traci et al. [232] and [sogai [233]. In these efforts,
the low-frequency TSD potential equation is solved for
a variety of airfoil forced motions, e.g., sinusoidal pitch or
plunge oscillation. Three dimensional solutions for the
TSD equation followed rapidly and can be found in
Caradonna and Isom [234], Borland et al. [235-237],
Rizzetta and Borland [238], Chattot [163], Isogai and
Suetsugu [239], Guruswamy et al. [240-242], Rodman
et al. [243] and Batina et al. [244-247]. In these efforts,
several different forms of the three-dimensional unsteady
TSD potential equation are solved for a variety of differ-
ent geometries ranging from isolated wings to nearly
complete aircraft. A supersonic freestream capability for
both steady and unsteady three-dimensional TSD ap-
plications is presented in Gibbons and Batina [248] and
Bennett et al. [249]. For supersonic freestream cases,
distances to the outer boundary can be reduced and
different far-field boundary conditions are required.

Lastly, an unsteady three-dimensional approach that
utilizes entropy and vorticity corrections at shock waves
(see Section 3.3) is presented in Batina [140]. With these
corrections shock wave strengths and positions are in
close agreement with Euler equation solvers, even for
difficult transonic flow computations.

A major reason for developing an unsteady transonic
aerodynamic analysis capability is to be able to predict
dynamic aeroelastic characteristics of a wing or airframe.
This is particularly important for transonic flow because
of the nonlinear behavior of flutter boundaries in this
speed regime. Dynamic aeroelastic applications require
a lime-accurate coupling between the aerodynamics and
a suitable structural dynamics algorithm. Example
three-dimensional applications for which flutter compu-
tations are described include Goorjian and Guruswamy
[250] and Guruswamy et al. [251-258] in which the
XTRANSS code is utilized and Bennett et al. [259] and
Silva and Bennett [260] in which the CAP-TSD (Com-
putational Aeroelastic Program-Transonic Small Dis-
turbance) code is utilized. A comparison of these two
codes is presented in Pitt et al. [261] for a variety of
fighter wing aeroelastic computations. The CAP-TSD
code is preferred because of its ability to model more
complex configurations. The first implementations of un-
steady full potential solvers can be found in Isogai [262],
Steger and Caradonna [263], Goorjian [117], Malone
and Sankar [200] and Shankar et al. [264]. In the first
work, the nonconservative form of the full potential
equation is used, but with a specially constructed artifi-
cial dissipation term that is in divergence form, mimick-
ing a conservative scheme. The latter efforts all utilize
conservative form. In all of these cases two-dimensional
computations involving simple forced airfoil motions are
considered. The first three-dimensional, unsteady full po-
tential studies can be found in Steger and Caradonna
[116], Sankar et al. [165,201], Isogai [263], Bridgeman
etal. [266], Malone et al. [267] and Shankar and Hiroshi
[268]. All of these efforts, except Isogai’s work, which
uses the previously mentioned nonconservative form
with conservative artificial viscosity, solve the conserva-
tive form of the full potential equation. Many of these
time-accurate schemes have similar characteristics. Thus,
1t is instructive to look at a particular scheme in more
detail.

As mentioned above, a particularly important and
difficult aspect of unsteady full potential algorithms is the
time linearization, which must be stable and conserva-
tive. An example of how such a linearization is construc-
ted is now presented (see Steger and Caradonna [263]).
For convenience, only a two-dimensional version is de-
scribed. Noting the fact that p = p(¢). the following
Taylor series expansion can be written:

~
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where the “0” subscript is used to indicate a “nearby”
known state of the solution, e.g., the solution at the
previous time step. The derivative of p with respect to ¢is
a non-commutable, differential operator derived from
a two-dimensional version of Eq. (8) and is given by

2p ¢ é
—_— = - X + ¥
o o? (: +oug 2T 0% )

Substituting Eq. (58) into the time term of the unsteady
full potential equation [Eq. (4)] yields

é[pé- ( + balom + dulo= )d)} = (o)
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Assuming that ¢ — ¢, is small, the error introduced by
expanding p is second order and therefore, is no larger
than that generated by a typical second-order-accurate
space-differencing scheme. The above time linearization
is conservative and linear in the velocity potential, and
thus achieves both of the important goals required of
a time linearization.

A complete time-accurate iteration scheme for advanc-
ing the velocity potential solution from one time level
n to the next n + 1 that utilizes the above time lineariz-
ation is given by

5
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where h is the time step, § = p?~7 and R}, is the nth-
iterate residual defined by
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In Egs. (60) and (61), d. dnd (> are standard central
first-difference operators and o\, (3\, 8., and 6 and stan-
dard backward or forward first-difference operators in
the x and v directions, respectively. The Al 1, ; quantity
appearing in Eq. (61) is taken from the artificial density
approach previously described in Section 3.3 [see Egs.

(42a) and (42b)]. This term 1s used to provide the upwind
influence required to stabilize any supersonic regions of
flow that might appear during the time-accurate iteration
process.

In order to avoid costly non-narrow-banded matrix
inversions, the iteration scheme given by Eq. (60) is ap-
proximately factored using an ADI-type factorization.
The resulting iteration scheme is given by

he —
[1 + R 8 — =Bl 6}
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where the first bracketed term represents a set of tridiag-
onal matrix inversions along the x direction, and the
second bracketed term represents a set of tridiagonal
matrix inversions along the y direction. Extension of this
scheme to a nonorthogonal, mapped coordinate system
involving three spatial dimensions is straightforward and
is described in detail in Bridgeman et al. [266].

Recent rotorcraft applications utilizing the conserva-
tive full potential equation can be found in Steinhoff and
Ramachandran [269], Ramachandran et al. [270,271]
and Bridgeman et al. {272] where an unsteady full poten-
tial formulation with vortex embedding is used. The
fundamental problem with rotorcraft flows is that the
shed wake remains in the rotor vicinity for a long time.
This determines the spatial and temporal distribution of
loads and ultimately the rotor performance and acoustic
characteristics. The method of vortex embedding permits
such computations because it removes the grid-coordi-
nate convection constraint that is typically associated
with time-accurate potential computations. This is ac-
complished by decomposing the velocity into two com-
ponents given by

q= Vo +q.. (62)

The first part is the standard velocity potential gradient,
and the second part is a specified rotational velocity field,
g., which contains the shed wake circulation and can be
highly localized. This approach is actually a generaliz-
ation of the standard differencing scheme that is used on
any potential-flow wake cut. In the latter case the differ-
encing across the discontinuous wake sheet actually has
the same form as Eq. (62). The only difference with
vorticity embedding is that the q, distribution is 5-6 cells
thick and is not constrained to a computational-domain
coordinate surface. With the velocity vector definition
given by Eq. (62), the full potential equation is given by

= V-(pq.).

which is the original full potential equation with an
added forcing function. Specification of g, can take on

po+ V(pTg) =
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several forms. In Caradonna et al. [273] it is specified as
the incompressible velocity field induced by a two-di-
mensional free vortex. The two-dimensional assumption
is valid for this study because the problem being solved is
a parallel blade-vortex interaction (BVI) problem, ie.
the wake-vortex core is assumed parallel to the on-
coming blade. For more general applications, g, can
be specified using a thin, well-defined sheet. Nonzero
values of ¢, need exist only near the sheet, which is
a thickened representation of the rotor wake that serves
to produce the proper shed circulation distribution asso-
ciated with the wake. In this approach, the location of
the sheet is computed using a deformable carpet of
shed markers. These marker locations can be computed
by means of a Lagrangian convection approach, or
they may simply be specified using experimental
measurement.

Additional recent work utilizing unsteady full poten-
tial algorithms can be found in Bridgeman et al
[274,138,145], Chen and Bridgeman [146], Strawn and
Tung [275] and Strawn and Caradonna [276]. In these
references three-dimensional transonic flow computa-
tions about rotorcraft rotors are described using a con-
servative full potential approach. The first four references

Y = 30°
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include viscous effects and a nonisentropic shock wave
correction designed to more closely model the Euler
equations (see Section 3.3). The viscous effects are in-
cluded using one of two options: a two-dimensional mo-
mentum integral method that uses a “strip” approach or
the three-dimensional finite-difference boundary laver
equation approach of Van Dalsem and Steger [277].

Typical unsteady rotor results from Bridgeman et al.
[138] showing surface pressure comparisons for both the
isentropic and nonisentropic approaches are presented in
Fig. 24. The experimental data are from the Army 7 x 10
Tunnel at Ames Research Center. The results are for an
untwisted, rectangular, NACA 0012 rotor blade with an
aspect ratio of 7.125, an advance ratio (u) of 0.246 and
a tip Mach number (M1) of 0.763. The advancing rotor
blade solution is displayed at a fixed radius near the tip
(r/R = 0.876) for six different azimuthal stations (i = 30,
60, 90, 120, 150, and 180°). As the blade advances a shock
wave forms, grows in strength and finally disappears at
Y = 180°. Generally, both computations are in good
agreement with experiment. However, the nonisentropic
result moves the shock wave upstream, in better agree-
ment with experiment, especially at the stations where
the shock is strongest.

l ! J 1 l 1 J

1.0 | r | | l
0 .25 .50 .75 10 .25
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Fig. 24. Surface pressure comparisons for an untwisted, NACA 0012 rotor blade at six different azimuthal angles, AR = 7.125,
w=0246. M; = 0.763, - R = 0.§76, taken {rom Bridgeman et al. [138].
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3.10. Design methods

So far only analysis methods utilizing nonlinear poten-
tial formulations have been examined. In analysis the
geometry, the freestream flow conditions, and a!l bound-
ary conditions are completely specified and the goal 1s
to obtain the flow field. In design the situation 1s more
complex because of the large variety of approaches that
are available. In one approach the surface pressure distri-
bution is specified, and the goal is to obtain the geometry
that produces this pressure. Still other design approaches
seek geometrical changes that produce optimal aerody-
namic performance, .g., minimum drag-to-lift ratio. The
whole field of aerodynamic design and optimization is
complex because each approach may have variations
based on the applicable speed regime, the governing
equation formulation being used, and/or the analysis
method being used. The purpose of this section is to
present a brief survey of design methods that utilize
a nonlinear potential governing equation approach for
transonic aerodynamic design. For the more general
topic of aerodynamic design and optimization, the inter-
ested reader is referred to AGARD [278] or Dulikravich
[279.280].

3.10.1. Indirect methods

The first design method class to be discussed is called
the indirect method. In this approach the designer does
not have precise control over either the geometry or the
solution. One example of an indirect method is the hodo-
graph approach, which involves transforming the full
potential equation such that the independent variables
become the velocity components. In the hodograph plane
the governing equation is linear, and thus, solutions can
be constructed using the powerful idea of superposition.
However, transformation back into the physical plane
can lead to difficulties as some solutions may not have
physical meaning. An additional drawback of the hodo-
graph method is that only shock-free solutions in two
dimensions can be obtained. The hodograph method has
not been used widely in recent years and will not be
discussed further. For more information on this ap-
proach the interested reader is referred to Boerstoel
[281] and Bauer et al. [71].

Another example of an indirect design method is the
fictitious gas approach first devised by Sobieczky et al.
[282]. In this approach the governing potential equation
is modified in the supersonic flow regime so as to retain
an “elliptic” nature over the entire “transonic” flow do-
main. This may be accomplished in a number of ways
providing the scheme maintains both local and global
conservation of mass. The simplest approach is to set the
local density to the critical value of density p* whenever
the flow becomes supersonic. Thus, assuming an ap-
proach based on the two-dimensional conservative full
potential equation. the supersonic flow regime is solved

using
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where the latter equation is the inherently elliptic
Laplace equation mapped to general coordinates. In sub-
sonic regions the traditional full potential computational
procedure is unchanged. With this approach the entire
domain is elliptic. and solutions obtained will be shock-
free. Once a solution with the fictitious gas model is
obtained. the sonic line information is saved.

The next step utilizes the sonic line as initial data and
a hyperbolic marching scheme to generate a physically
valid solution in the supersonic region of flow. In two
dimensions this scheme is typically the well-known
method of characteristics, e.g., see Dulikravich and
Sobieczky [283]. In three dimensions a more general
marching scheme based on the full potential equation 1s
utilized, e.g., see Yu [284]. Once this solution is generated
the original aerodynamic shape wetted by supersonic
flow will no longer be a stream surface in the new flow
solution. Thus, a new aerodynamic shape in this region
must be computed by finding the stream surface that
connects the upstream and downstream sonic points at
each wing station. Finally, the last step in this approach
consists of testing the modified aerodynamic shape using
the original method in analysis mode. The resulting solu-
tion should be shock free or nearly shock free. The
fictitious gas method has been used for a large number
of applications including airfoil and wing design by
Sobieczky et al. [282], cascade design by Dulikravich
and Sobieczky [283] and wing design by Yu [284], Fung
et al. [285] and Raj et al. [286].

There are two difficulties with the fictitious gas ap-
proach. The first is that shock-free designs are not always
possible for all combinations of initial geometry and
freestream flow conditions. If such a set of conditions has
been chosen the supersonic marching solution may not
converge properly. The second difficulty is that the
marching problem for the supersonic flow domain is not
well posed in three dimensions, i.e., small changes in the
initial data can produce large changes in the final solu-
tion. This difficulty is most severe for small aspect-ratio
wings involving large gradients in the spanwise direction.
See Fung et al. [285] for more discussion on these latter
two points.

3.10.2. Inverse methods

‘The inverse method in aerodynamic design seeks to
determine the aerodynamic shape for a specified surface
pressure distribution, ie. the “inverse” of the normal
analysis approach. Sometimes this design approach is
called the surface design method. An advantage of this
approach is that it offers direct control over aerodynamic
forces and moments (through specification of the surface
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pressure). In addition, by utilizing proper constraints on
the adverse pressure gradient, a degree of control on
boundary layer separation is also available, even for
inviscid implementations. The biggest difficulty of the
inverse design method is selecting a pressure distribution
that will achieve the best aerodynamic performance for
a given set of constraints. Clearly, experience helps in this
area, but knowing what is good aerodynamically and
(at the same time) does not over constrain the inverse
method and prevent convergence can be a problem.

The inverse design method was first implemented
using a two-dimensional TSD approach by Steger and
Klineberg [287] and Langley [288] and a two-dimen-
sional full potential approach by Tranen {2897, Carlson
[72], Volpe and Melnik [290] and Volpe [291]. Sub-
sequently, extensions to three dimensions have been
made by Shankar et al. [292,293] for the TSD equation,
by Henne [294] and Garabedian and McFadden [295]
for the nonconservative full potential equation, and by
Shankar [385] for a conservative full potential approach.
A good discussion of early inverse methods for transonic
airfoil and wing design, comparing and contrasting vari-
ous characteristics is given in Slooff [296]. More recent
applications for the inverse design approach include
Gally and Carlson [297] and Ratcliff and Carlson [298]
where the TAWFIVE analysis code of Street [97] is
modified for the wing inverse design problem, Takanashi
[299] where a wing design method based on a residual-
correction concept 1s presented, Carlson and Weed [300]
where a wing design method 1s developed using a Car-
tesian-like grid system, Malone et al. [301] where
a method is applied to transonic nacelle design, Hassan
and Charles [302] where a method is presented for heli-
copter rotor design, and de Mattos and Wagner [173]
and de Mattos [172] where a method is used for both
wing and wing/fuselage design.

Although implementation details vary from approach
to approach. the basic inverse design method has several
common steps. To gain insight into this class of design
methods, details from the implementation of de Mattos
and Wagner [173] are now described. For brevity only
an airfoil algorithm is presented using the two-dimen-
sional conservative full potential governing equation
given by Eqs. (37). For this presentation the ¢ and # coor-
dinates are assumed to be along and away from the
airfoil surface, respectively. The first step in the inverse
design procedure is to generate an analysis solution using
the initial geometry. Second, a modified velocity poten-
tial along the airfoil surface is computed using the specified
pressure distribution. This is accomplished by converting
the specified pressure into a specified speed using
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which is derived from the density-speed relation, the
speed of sound definition and the steady Bernoulli equa-
tion. The specified speed can be related to the velocity
potential using its general coordinate definition

qslpecificd = U"¢2 + an'):’

where the n superscript is used to indicate the nth design
iteration. In order to achieve the specified surface pres-
sure, it is assumed that a perturbation in the velocity
potential A¢ is required. To this end the above relation
can be written as

qszpecified =(U" + AU") ((/,'; + A45§)
+ (V" + AV P? + AgT),

which after dropping higher-order perturbations and ap-
plying the surface condition V = 0 becomes

Ad)? - ¢2+1 _ ¢>2 - queciri;z: (51"-)2.

Using this relation and the assumption that the leading
edge value of the velocity potential does not change,
modified surface velocity potential values downstream of
the leading edge can be computed.

The third step in the inverse design approach is to
compute a new global solution with a new airfoil sur-
face boundary condition. That is, instead of solving
a Neumann problem involving flow tangency at the
airfoil surface, a Dirichlet problem is solved. The newly
computed velocity potential is used as the Dirichlet
boundary condition.

In general, the new global solution will have a nonzero
value of V at the airfoil surface. The fourth inverse design
step is to use this nonzero value of V to compute
a change in the airfoil geometry. A formula to achieve
this can be derived from dy/dx = ¢,/¢,. This reestab-
lishes flow tangency at the airfoil surface. Once the airfoil
shape has been changed the whole process starts over
with step one and continues until a suitable level of
convergence has been achieved. As pointed out in de
Mattos and Wagner [173], it i1s important to underrelax
the shape changes that are implemented in this algorithm
using a relation of the form

m+1l (l)_\'"?’ + (1 _ (1)).\.n’

)
where y" " ! is the initial updated value of v before under-
relaxation, y"* ! is the final value of y used to update the
airfoil shape, and w is the relaxation factor that must be
below one.

One last point regarding this technique is in order. It
has to do with trailing edge closure. In general, if this
issue is not addressed, the above described inverse design
approach will produce an airfoil with an open trailing
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edge, or even worse, a trailing edge with negative thick-
ness. To keep this from happening a function &(x) is
added to the airfoil y-coordinate distribution after each
design iteration. This function is given by

\

. X
Mx) = — Aw(—),
.

\

where the quantity A, is the airfoil trailing edge thick-
ness and x/c is the normalized distance along the airfoil
chord. The problem of trailing edge closure is 2 common
one among inverse design methods and must be ad-
dressed in order for sensible results to be obtained.

An example result from an inverse wing design method
taken from Gally and Carlson [297] is presented in
Fig. 25 for an initial wing with NACA 0012 airfoil sec-
tions. The initial pressure distributions, user-specified
target pressures and the final design pressures are pre-
sented for two different wing span stations, 30 and 70%
of semi-span. At both stations the new pressures are n
close agreement with the target pressures. The upper-
surface shock has been eliminated or considerably
weakened at both stations.
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Fig. 25. Comparison of initial, target and final design pressures
using an inverse transonic wing design procedure, taken from
Gally and Carlson [297). (a) 30% semi-span station. (b) 70%
semi-span station.

3.10.3. Numerical optimization design (gradient methods)
Numerical optimization using gradient-based methods
(GM) in aerodynamic design has received much attention
in recent years. The reliability and success of gradient
methods is based on smoothness of the design space and
the existence of only a single global extremum. A good
review of gradient methods used in aerodynamic design
is presented by Reuther [303]. The general idea asso-
ciated with this broad class of methods consists of the
following steps. First. determine the optimization’s objec-
tive, e.g., minimization of the drag-to-lift ratio, minimiz-
ation of the least-squares error between the actual and
a prescribed pressure distribution, etc. Second, the ge-
ometry to be optimized must be parameterized. This
parameterization must completely describe the geometry
{or the portion that is to be optimized) and must lend
itself to discrete variations that can be independently
modified. In many (but not all) gradient method imple-
mentations it is advantageous to parameterize the ge-
ometry with the minimum number of parameters that
will still completely describe the applicable design space.
Examples of aerodynamic shape parameterizations are
given in Hicks and Henne [304] where a series of “bump”
functions is used or Burgreen and Baysal [305] where
a series of B-spline control points is used.
Mathematically, the dependence between the objective

£ and the decision variables resulting from the design

space parameterization x can be expressed as follows:

FX) =f(x), Xa, 00os X7y Xih

where K is the total number of decision variables used in
the design space discretization. In addition, problem con-
straints must be identified, e.g., minimum wing thickness,
minimum wing volume, etc. These can be included in the
objective function as a penalty or included as separate
inequality constraints. Different gradient methods allow
the inclusion of constraints in different ways.

The third step is to compute the direction in the design
space (away from a specified initial condition) that min-
imizes the objective. This is achieved by using (for
example)

xn*l =x" —g" Vf‘(z\’")‘r. (63)

where x" is the decision variable vector from the previous
iteration, x"* ! is the improved decision variable vector,
s" is the nth-level step-size vector. and VI (x")T is the
nth-level column vector of sensitivity derivatives. Eq. (63)
represents the simplest type of gradient method, often
called the steepest decent method. Many others are avail-
able including conjugate gradient, Newton or quasi-
Newton approaches. The interested reader is referred to
Luenberger [306] or Reuther [303] for general details in
this area. Additional comments regarding specific optim-
jzation packages that have been used in aerodynamic
optimization can be found in Vanderplaats [307] for
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CONMIN (constrained-function minimization), Gill
and Murray [308] for QNMDIF (quasi-Newton method
with difference approximations for the derivatives),
Gill et al. [309] for NPSOL (nonlinear programming
solver), Vanderplaats [310] for ADS (automated
design synthesis) and Cheung [311] for IOWA (parallel
optimization with aerodynamics). The technique for de-
termining sensitivity derivatives is a key item in any
gradient-based design approach and has received much
attention. The simplest approach, often called the
“brute-force” or finite-difference method, consists of us-
ing finite-difference formulas to compute sensitivities of
the form

of S X X g xg) = f (X X X e X
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where ¢, are the user-specified difference intervals. Both
values of f used in the above equations numerator are
computed using a separate CFD simulation from an
appropriate analysis code. Care must be taken in this
approach to make sure that each solution is adequately
converged, usually with tighter convergence than in an
analysis computation. If not, the lack-of-convergence
error can cause large errors in sensitivity derivative com-
putation and difficulties in the optimization process. If
a design problem using the above approach has K deci-
sion variables, the sensitivity derivative computations for
each design iteration will require K + 1 function evalu-
ations. Specifically, K + 1 complete CFD analysis solu-
tions must be computed, one solution for the unpertur-
bed or baseline geometry and K solutions corresponding
to the K perturbed geometries. After the sensitivity deriv-
atives have been computed and the steepest descent di-
rection is determined, a “line search” along this direction
is required to determine values for the step size vector s
One approach for this operation is to compute several
values of f using different step sizes and then compute the
minimum value of fusing a curve fitting procedure (see
Cheung [312] or Reuther [303]). Other line search pro-
cedures utilized for aerodynamic optimization are de-
scribed in Melvin et al. [313].

Overall, gradient-based methods for typical aerody-
namic optimization problems require from several iter-
ations to several tens of iterations to converge (depending
on the method used and the number of decision vari-
ables}. Thus, the total number of CFD analysis solutions
required for this type of optimization approach can easily
number in the thousands. Because nonlinear potential
methods require little computer time per solutjon relative
to Euler or Navier-Stokes approaches, a potential-based
finite-difference optimization approach may provide
suitable turnaround times for the design environment
whereas a similar approach based on the Euler/
Navier-Stokes equations would be too expensive. Exam-
ples utilizing the finite-difference gradient optimization

method in conjunction with nonlinear potential solvers
include Hicks et al. [314], Kennelly [315] and Ghielmi et
al. [316] for airfoils; Haney et al. [317], Hicks [318],
George et al. [319] and Cosentino and Holst [170] for
wings; Destarac et al. [320] for wings and wings with
propulsion effects; Reneaux and Allongue [321] for heli-
copter rotors; Cheung and Holst [171] for wing-body
applications; and Aidala [322] for wing-body-canard
configurations.

Other methods for evaluating sensitivity derivatives
that seek to reduce the large computational cost asso-
ciated with the finite-difference method are the quasi-
analytic (QA) method of El-banna and Carlson [323,324]
and Arslan and Carlson [325] and the method based on
control theory presented by Jameson [326,327]. In the
QA approach the sensitivity derivatives are obtained by
solving large sparse systems of matrix equations. The
elements of these matrix equations are developed by
taking analytic derivatives of the numerical or discrete
governing equations (with the aid of a symbolic manip-
ulation program). In this approach an entire set of sen-
sitivity derivatives is obtained with the solution of
a single matrix equation. Sensitivity derivatives obtained
using this approach are in good agreement with those
obtained from the finite-difference approach. More work
needs to be completed in this promising area to assess
this method’s abilities in actual design optimization
applications.

The second method involves the numerical solution of
an adjoint equation derived using control theory {see
Reuther [303] for a derivation of the adjoint equation for
the full potential equation in two dimensions). The op-
timization method using the adjoint approach has the
following steps: First, solve for the flow field using a typi-
cal analysis method. Next, solve the adjoint equation for
the sensitivity derivatives. Using these sensitivity deriva-
tives and a suitable gradient optimizer, obtain an im-
proved design with updated decision variables. Finally.
repeat all steps until a sufficient Jevel of convergence is
achieved. This approach is superior to the finite-differ-
ence approach for generating sensitivities because all the
sensitivities are obtained (no matter how many there are)
by solving one adjoint equation, with a cost on the order
of one flow field solution. Thus, for design problems
containing a large number of decision variables, the cost
savings for this approach over the finite-difference ap-
proach is significant. Because any number of decision
variables can be used in the adjoint approach without
significantly increasing the sensitivity derivative com-
putational cost, it is natural to utilize very large numbers
of decision variables in an attempt to improve optimiza-
tion results. The cases that are reported in Jameson
[326,327] follow this strategy by utilizing every surface
grid point as a decision variable. In the case of wing
optimization, this produces as many as several thousand
decision variables. As described in Reuther [303]
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this increased design space resolution creates several
difficulties. First of all, the large number of decision
variables can introduce high frequencies into the flow
solution causing difficulties for the flow and adjoint sol-
vers. The high-frequency aspects of the design space can
cause local extrema to appear, which make proper con-
vergence of the gradient optimizer difficult. In the work
of Jameson [326,327] a gradient smoother is introduced
to solve this problem by eliminating (or smoothing) high-
frequency details. Although this approach works, it elim-
inates (at least some of) the apparent advantage of being
able to efficiently handle a large number of decision
variables. It also introduces an undesirable aspect: the
dependence of the optimization algorithm on a smooth-
ing process. In contrast, the adjoint- based gradient op-
timization method of Reuther [303] utilizes a smaller
number of decision variables following the design space
parameterization of Hicks and Henne [304] and pro-
duces good results without a gradient smoother. A typi-
cal result using a gradient optimization algorithm 1S
presented in Section 3.11.3.

3.10.4. Numerical optimization design (genetic algorithms)

The last optimization method discussed in this section
is called the genetic algorithm (GA) approach (or some-
times the random search approach). The basic idea asso-
ciated with this approach is to search for optimal solu-
tions using the theory of evolution. During solution iter-
ation (or “evolution” using GA terminology) the decision
variables are manipulated using various operators (selec-
tion, combination, crossover, mutation) to create new
design populations, i.e., new sets of decision variables.
General details of such genetic algorithms and the speci-
fic operators used in them can be found in Goldberg
[328], Schwefel [329] and Davis [330]. Each design is
evaluated using an objective-like “biological fitness func-
tion” to determine survivability. Constraints can easily
be included in this approach. If a design violates a con-
straint, its fitness function is set to zero, Le., it does not
survive to the next evolution level. Because GA optimiza-
tion is not a gradient-based optimization technique, it
does not need sensitivity derivatives. It theoretically will
work well in non-smooth design spaces. The ability to
arbitrarily mutate allows a GA optimization approach
(theoretically) to find the global extrema in design spaces
containing several or perhaps many local extrema. A dis-
advantage of the GA approach is expense. In general, the
number of function evaluations required for a GA algo-
rithm exceeds the number required by a finite-difference-
based gradient optimization. Example applications util-
izing potential-based flow solvers in the context of GA
optimization can be found in Quagliarella and Della
Cioppa [331] for airfoil applications, Vicini and Quag-
liarella [332] for multi-point and multi-objective airfoil
applications and Obayashi et al. [333] for multi-disci-
plinary optimization of transonic wings.

Two simple optimization examples involving two-
dimensional linear aerodynamics that compare the GA
approach with a typical gradient-based optimization
method (GM) are now discussed. The first comparison
{taken from Obayashi and Tsukahara [334]) is for the
optimal design of a subsonic airfoil using a linear panel
method to evaluate the aerodynamic “fitness” of each
design variation. The Jift is maximized under airfoil thick-
ness and angle of attack constraints. Linear combina-
tions of four existing airfoils are used to establish the
design space. This produces a very general but “noisy”
design space. For this case the GA and GM algorithms
produce optimized lift coefficient values of 2.48 and
1.716, respectively. The GA and GM algorithms require
972 and 159 function evaluations, respectively. The GM
algorithm results are from the best of four separate runs
that each utilized different initial conditions.

The second example (taken from Bock [335]) is for the
optimal design of a symmetric, sharp- edged airfoil at zero
lift in supersonic flow. The wave drag is minimized at
a fixed freestream Mach number of 1.732 under a thick-
ness constraint. The aerodynamic “fitness” is evaluated
numerically using shock-expansion theory. The airfoil
shape is represented as the superposition of a series of five
Legendre polynomials plus a triangle function, yielding
a total of six decision variables. For this case the GA and
GM algorithms converge to drag coefficient values of
0.0308 and 0.0281, respectively. The theoretical optimal
value of the wave drag for this case is 0.0279. The GA and
GM algorithms require about 300 and 60 function evalu-
ations, respectively. The design space in this case is much
smoother than in the previous case and is (apparently)
a key reason for the superior results produced by the GM
algorithm. In addition, (as stated by the author) tack of
convergence of the GA scheme to the theoretical value of
minimum drag may be due to some inappropriate aspect
of the mutation algorithm that is utilized.

Based on the above results, the following abservations
can be made. The GA approach is computationally
expensive, requiring 5-6 times the number of function
evaluations required by the (already expensive) GM ap-
proach. The GA approach, which demonstrates tremen-
dous results in the first example, especially in view of the
noisy design space, is a disappointment in the second.
This suggests more work is required to properly evaluate
this approach for aerodynamic design. In particular,
characteristics of the GA approach for more realistic
nonlinear design problems need to be developed.

3.71. Methods developed for complex geometry
applications

The purpose of this section is to review transonic full
potential methods that have been developed for complex
geometry applications including complete or nearly com-
plete aircraft. This area can be divided into four major
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sub-areas according to the flow field discretization ap-
proach: chimera zonal grids (sometimes called overset
grids), patched zonal grids, Cartesian unstructured grids
and unstructured grids. Each of these discretization types
is sketched in Fig. 26 for a simple two-dimensional body
inside a rectangular domain. The chimera zonal grid
approach utilizes two or more grid zones that are gener-
ated separately and overlap in a general fashion. The flow
field solutions in each chimera grid are connected during
flow solveriteration using a general interpolation scheme
{Fig. 26a). The patched zonal grid method 1vpically utiliz-
es several to many separate grid zones that interface
along common boundanes (Fig. 26b). Each of the indi-
vidual grids 1n the chimera and patched zonal grid ap-
proaches typically utilizes a structured grid composed of
quadrilaterals in two dimensions or hexahedrons in three
dimensions. The unstructured Cartesian-grid approach
utilizes a grnid composed of squares in two-dimensions or
cubes in three dimensions. Each Cartesian grid cell can
be discontinuously subdivided into smaller cells in re-
gions of high fow gradient (Fig. 26¢). The unstructured
grid approach typically utilizes flow-domain discretiz-
ations composed of triangles in two dimensions or tetra-
hedra in three dimensions (Fig. 26d).

For the unstructured grid approaches the flow solver
is typically a finite-volume or finite-element method

(FEM). For the zonal grid approaches the flow solver is
typically a finite-difference or finite-volume method.
Since most of the methods highlighted in previous sec-
tions of this review have been in the latter category. the
FEM approach (or more generally. unstructured grid
methods) will be primarily highlighted in this section.
Selected complex geometry results are presented o allow
a complete evaluation of the full potential approach in
aircraft analvsis and design.

3111, Zonal grid methods

For the purpose of this review. zonal grid methodologs
has been organized into two categories. chimera and
patched methods. The primary zonal grid method utiliz-
ed in CFD applications is the chimera grid approach.
which will be emphasized in this section. The zonal grid
approach (in general) and the chimera zonal grid ap-
proach (in particular) are versatile techniques for obtain-
ing aerodynamic results for complex configurations
including reasonably complete aircraft. In the chimera
zonal grid approach a separate boundary conforming
grid is generated about each major feature of & complex
aerodynamic configuration. For example. for a transport
aircraft consisting of a wing/body pylon/nacelle. a total
of five grid zones might be used. one for the near field
surrounding cach of the major geometric features (wing.
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body, pylon, and nacelle) and a fifth background grid to
“connect” the near field grid zones to freestream. Each of
the component grids is generated without regard to any
of the other component grids. Each boundary grid point
receives its boundary condition information from either
freestream, flow tangency {assuming the solver is invis-
cid), symmetry or from another component grid using
interpolation. Some of the grid cells generated for one
component of the geometry may have grid poinots that lie
inside other components of the geometry. Computations
at such points are handled by an “IBLANK array multi-
plier”, which has a value associated with each grid point.
IBLANK is equal to one for points in valid flow regions
(called field points) and equal to zero for points in invalid
or “blanked out” flow regions. Blanked-out grid points
that lie immediately adjacent to field points are called
fringe points or sometimes intergrid boundary points
(IGBPs). Fringe points require interpolated information
from a neighboring grid zone every iteration. Blanked
out points that are not immediately adjacent to field
points are called hole points. Computations proceed in
an identical fashion at all grid points, which permits
efficient code vectorization and/or parallelization, but
because of the IBLANK array multiplication, only grid
points in valid regions of flow (ie., field and fringe points)
get updated as the iteration proceeds.

Early work in the development of the multi-zone
approach for transonic potential calculations can be at-
tributed to the grid embedding approach used for solving
the TSD potential equation, e.g., see Boppe [66]. Boppe
and Stern [67] and Shankar and Malmuth [64]. In these
references the TSD equation is solved for the flow about
various three-dimensional configurations including
a reasonably complete aircraft. Early work in the devel-
opment of the multi-zone overset approach applied to
numerical solution of the full potential equation can be
found in Atta [336] for airfoils, L& [337] for wing/body
geometries and Atta and Vadyak [338] for wing/nacelle
configurations. Formalization of the chimera approach
with the IBLANK array logic can be attributed to Steger
et al. [339], Benek et al. [340] and Dougherty et al.
[341]. In these references the scheme was first given the
name “chimera” and basic concepts of the approach were
developed. Applications consisted of relatively simple
two- and three-dimensional simulations, primarily in-
volving the Euler equations.

The chimera and patched zonal grid approaches have
been further developed for solving the full potential equa-
tion by Ecer and Spyropoulos [118] for wing-body com-
binations: by Epstein et al. [342] for nearly complete
aircraft configurations; by Lifshitz et al. [343,344] for
airfoils inside wind tunnel walls with viscous effects; by
Holst [345,122,346] for a variety of three-dimensional
applications including a wing/body/nacelle; and by San-
kar et al. [347], Bangalore et al. [348], Berkman et al.
[349] and Moulton et al. [350.351] for a variety of hybrid

applications. In the latter area the term “hybrid” refers to
the use of different flow solvers in different grid zones.
This is a particularly interesting aspect of the zonal grid
approach that demonstrates a significant amount of flex-
ibility. Typically, the flow field in an inner grid zone, e.g.,
next to the geometrys surface, is solved using
a Navier-Stokes approach. The flow field in an outer grid
zone is solved using a full potential solver. The detailed
viscous flow field physics associated with shock-
wave/boundary-laver interaction or dynamic stall is han-
dled with the Navier-Stokes solver and the relatively
simple outer flow region is handled using the computa-
tionally efficient full potential approach. A factor of two
reduction in CPU time with no degradation in solution
accuracy relative to a fully Navier-Stokes approach is
reported in Sankar et al. [347].

An example result (taken from Holst [346]) using
a chimera grid approach to compute the transonic flow
about a wing-body-nacelle geometry is shown in Figs. 27
and 28. The chimera grid for this geometry consists of
five grid zones, including a wing, a fuselage and an outer
Cartesian-like grid. In addition, there are two nacelle
grids, a body-conforming grid surrounding the nacelle
surface and a stretched Cartesian grid that surrounds
the inner nacelle grid. A hyperbolic grid generation code
(see Steger and Rizk [352] or Chanet al. [353])1s used to
construct the wing, fuselage and inner nacelle grids, while
a simple algebraic grid generator is used to counstruct the
other two Cartesian-like grids. A cut approximately
through the vertical nacelle symmetry plane showing the
wing grid and the two nacelle grids is displaved in Fig. 27.
Fig. 28 shows Mach number contours on the wing upper
surface, on the fuselage in the vicinity of the wingfuselage
intersection, and on the upper and outboard portions of
the nacelle. The results are computed at M, =09,
% = 2° using a moderate-sized grid consisting of 689,591
total points. The shock wave structure of this solution on
the wing, fuselage and nacelie surfaces is clearly visible.
A shock extends across the entire aft portion of the upper
wing surface from the tip to the root and continues
around the upper fuselage. The interference shock caused
by the close proximity of the wing and the nacelle is
clearly visible on the aft nacelle surface. This computa-
tion required about 9 min of CPU time on a high-end
workstation running at about 70 MFLOPS.

3.11.2. Unstructured grid methods

Examples of early unstructured grid FEM approaches
used to solve the full potential equation for transonic
flow are presented in Glowinski et al. [354]. Ecer and
Akay [355] and Vigneron et al. [356]. A particularly
interesting FEM issue for transonic potential flow solu-
tions is how to stabilize supersonic regions of flow. An
artificial dissipation term that leads to an upwind influ-
ence is typically used. Deconinck and Hirsch [111.184].
Akay and Ecer [110] and Eberle [114,11 5] all use a form
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Fig. 27, Selected grid surfaces from
symmetry). tuken from Holst [3467.

wing-body-nacelle configuration,

on selected surfaces of the

Fie. 28, Mach number contours showing the computed solution
%= taken from Holst [346].
onic flow applications is presented and demonstrated in
3.357] and Periaux [338]. In this ap-

V. =09 y=2
3.3
Bristeau et al. [20
proach a least-squares conjugate gradient method is used
to solve the finite element equations. The least-squares

of the artificial density scheme presented in Section
Results from a variety of artificial density schemes ap-
plied in a finite element context are presented and com-
pared in Habashi and Hafez [132]. Apphcations in these
studies range from airfoils and cascades to wings. Still

another supersonic flow stabilization routine for trans-

functional 1s modified 1o include a penalty function
that becomes very large for expansion shocks without
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becoming large for normal compression shocks. This
effectively takes on the role of an artificial dissipation
term in stabilizing supersonic regions of flow. Of all carly
studies in the area of full potential FEM applications 1o
transonic flow. the work of Heckman [359] is of particu-
far note. In this study a transonic flow simulation about
a nearly complete business jet consisting of a wing/
body ‘nacelle is presented. This demonstrates the capabil-
ities of the FEM method and the unstructured grid
approach for handling complex geometries.

Recent studies exploring the theoretical aspects of the
FEM approach are presented in Wong and Hafez [205].
Glowinski [3607] and Berger ¢t al. [361]. Other recent
applications of unstructured grid methods for solving the
full potential equation include Whitehead and Newton
[362] for cascades, Bristeau et al. [363] for a variety of
applications. Mehta and Jayachandran [364] for axisym-
metric bodies. Kinney et al. [365] and Kinney and Hafez
[139] for wings. and Kinney ct al. [366-368] for nearly
complete aircraft.

To gain more insight into the characteristics of the
FEM approach for solving the full potential equation,
additional details following the recent work of Kinney
et al. [365] ure now presented. The governing equation
utilized for this implementation is written in steady Car-
tesian coordinates [Eq. (91]. and the density relation uses
0. ¢, nondimensionalization. Kinney et al. [365] util-
ize a flux-based upwind procedure to stabilize supersonic
regions of flow m the context of a general unstructured
arid approach. Following the approach of Osher et al.
[1297 an elemental flux is defined using

— |0 il M < 1.
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where p* and ¢ are sonic values of the density and fluid

speed. respectively, With this flux definition the density 1s

upwinded using

As ¢

p=gp- " (:u»qL (64)

where s is the space coordinate along the stream direc-
tion. The partial derivative with respect to s is defined by
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The upwind density evaluation scheme given by Egs. (04)
and 1631 is very similar to the artificial density scheme
described in Section 3.3, see in particular Eq. {43a) and
(43b). Following the work of Jameson [369] a second-
order-accurate numerical evaluation of Eq. (64) can be
written. For brevity it is given in one dimension as

aghe o =gl 2 = Alpgli g2 + PLIADG), 1 2-

where A is a backward difference operator and ¥(r} is
a limiter function defined by

Y(r) = max[minir. 11 0].

and r is the ratio of flux gradients at i — { 2and i + 1.2,
At a flow extremum r will be negative causing ¥ = 0.
Thus. a dissipative first-order scheme is produced. At all
other flow points a second-order-accurate upwind
scheme is realized.

The FEM discretization used by Kinney ct al. [365]
can be expressed by multiplying the upwind Cartesian
form of the full potential egquation by o test function
N and then by integrating over an appropridate control
volume ©

rer
- [ J [N, + N, + ¢ N] O
Q
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where S is the boundary of . The surface integral in the
above equation is zero at all solid surfaces and is replaced
with an appropriate condition in the far field. The velo-
city potential and test function N are assumed to van
linearly across each FEM cell. To complete this formula-
tion upwind fluxes are needed for each tetrahedron cell
center. This is accomplished by first storing upwind
fluxes at each node, which are obtained from a piecewise
average of the fluxes in the upwind cells.

A simple two-dimensional example is shown in Fig. 29.
The upwind flux in cell D is computed using the centered
fluxes in cells A and B (both upwind to cell D). The
formula used for this computation is given by

(Pg)p = tpghn — Wpghn — alpq)a — Plogls].

where ¢ and b must sum to one and are computed from
the local velocity vector and geometric aspects of the

Fig. 29. Sketch of @ typical tw o-dimensional upwind e culen-
tation for cell I in terms of the centered fluxes in the upwind
cells A and B
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local cell. Thisis just o first-order-accurate example with-
out flux limiters. For the complete flux computation
algorithm see Kinney et al, [3657].

Once the spatial diseretization is complete an iteration
scheme must be constructed that remains hvperbolic in
supersonic regions of flow and elliptic in subsonic regions.
Caretully evaluated upwind-biased temporal damping
terms of the form ¢, must be added for stability in
supersonic regions, just like other potential ieration
schemes tsee fumeson [§17 for more discussion on this last
pointl. A Newton linearization is performed about the
previous iteration involving only the first-order terms with
the second-order terms lagged one iteration. The result of
the Iinearization 1s o large sparse linear svstem that must be
solved during cach iteration using an appropriate lincar
solver. A typical transonic wing computation using this
approach on a grid consisting of 99,302 nodes and 342.624
tetrahedra requires about 22 min of CPU time and 12 MW
of memory on a single processor of a Cray C-90 computer.

A significant advantage of the unstructured erid ap-
prouach is the ability to perform computations on complex
geometries relatively casily. te. with this approach the
volume grid generation issues are simplified for complex
shapes. An example tuken from Kinney et al. [368] show-
mg i grid und surface solution for a geometrically com-
plete ransport areralft s displaved in Fig. 30. The aireraft
configuration consists of a wing, body. pylon. nacelie and
avertical tail. The simulation conditions consist of a free-
stream Mach number of 0.78 and a lift coetlicient of 0.44.
Note the fine grid resolution on the aireraft surface in
Fig. 30w In Frg. 30b. the surface contours for the pressure
cocthicient are displayed. Note the strong transonic shock
on the wlt-part of the wing upper surface.

SIS Unsvuciured Cartesian grid methods

As already  presented. unstructured  Cartesian grid
mcthods utilize grids composed of equal-sized squares in
two dimensions or equal-sized cubes in three dimensions.
Solution adapuvity 1 achieved by subdividing cach grid
celbm u region of high solution gradient into four smaller
cqual-sized squares for two dimensions or into cight
smaller cqual-sized cubes for three dimensions. Grid ad-
aptation can also be performed in regions where the
ccometry is ighly curved and thus likely to produoce
lurge soluvion eradients. This process of cell subdivision
ivpically continues for several levels until an accuracy
requirement i achieved or until a predetermined max-
imum number of subdivisions is attained. The subdivi-
SO0 process generdates discontinuous cell sizes between
adiacent cells, but never more than a two-to-one Jevel of
discontinuity. The flow sobver diseretization scheme. typ-
iy of the FEM variety, is implemented 1o handle the
adjacent cell discontinuity. In addition, Cartesiun grid
i that mtersect an aerodynamic surface result in ir-
regular colbs vhat must also be handled within the frame-
work of the BN ~eheme This approach for handling
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Fig. 30. Sehation about a typical twin-engine transport aircraft
in the transonic flow regime using the unstructured FEM ap-
proach. M = 078 C; = 044, taken from Kinney et al [36%].
tad Surface grid. (b) Surfuce pressure coeflicient contours,

complex geometries is perhaps the most general and
casiest 1o implement of all the approaches utilized in
CED. Its ease of implementation and generality are de-
rived from the simple manner in which the intersection
between un analytically defined Cartesian grid and an
arbitrary CAD-defined geometry can be computed. The
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biggest disadvantage of this approach occurs when a flow
field gradient exists at a 45° angle with respect to the grid,
e.g., the gradient along a swept-wing leading edge. In this
case the grid must be refined in two (or sometimes even
three) directions to resolve the gradient.

A number of unstructured Cartesian grid full potential
applications have been presented in the literature for
a variety of transonic flow problems. Early applications
can be found in Johnston et al. [370,371] and Wedan
and South [372] for simple geometries. In these studies
the basic theoretical aspects including irregular cell
treatment at boundaries are emphasized. Another un-
structured Cartesian approach used for solving three-
dimensional inlets is presented by Brown [189]. In this
study the nonconservative full potential equation is sol-
ved using a finite-difference multigrid scheme. A recent
Cartesian unstructured grid method for solving the full
potential equation based on a Newton-Krylov-Schwarz
scheme is studied in Cai et al. [373]. This type of method
employs a domain decomposition FEM approach and
thus is suitable for parallel computer implementation.
Total solution time for transonic flow cases is reported to
be six times larger than for subsonic cases. A recent
approach utilizing the unstructured Cartesian grid pro-
cedure, that has been extensively developed and used
for many applications, is the approach used in the
TRANAIR code. The theoretical aspects of the
TRANAIR method including the FEM discretization
procedure are described in detail in Rubbert et al. [374],
Young et al. [373] and Bieterman et al. [376]. Numerous
complex geometry applications utilizing TRANAIR have
been reported in the literature. A few of these include
Cenko and Piranian [377] for store loads prediction on
fighter aircraft, Ridlon et al. [378] for static aeroelastic
analysis, SenGupta et al. [379] for unsteady aerodynam-
ic and flutter computations, Madson [380] and Goodsell
et al. [381] for fighter aircraft computations, Chen et al.
[382] for engine-airframe integration applications with
and without power, Madson {383] for supersonic flow
sonic-boom computations and Jou et al. [384] for aero-
dynamic design optimization.

Computational costs associated with the TRANAIR
program for typical transonic analysis computations in-
crease approximately as O(N'-%), where N is the number
of elements used in the problem {Young et al. [375]).
A typical transonic computation consisting of 200,000
elements requires about 3500s of CPU time on a Cray
X-MP computer for a tightly converged solution. This
consists of about 1000s of setup time (including grid
generation) and about 2500 s for flow solution time. The
memory requirements for TRANAIR increase approxim-
ately as O(N). For a typical transonic computation con-
sisting of 200,000 elements the memory requirement 1
just over 50 million words.

A typical result from the TRANAIR code taken from
Jou et al. [384] is presented in Fig. 31. This example

shows TRANAIR's complex geometry handling
capability in the context of a propulsion-airframe-
integration design optimization application. Fig. 3la
shows Mach number contours on the upper surface of
a transonic wing in the vicinity of a low-mounted
nacelle before design optimization. Note the existence
of a transonic shock emanating from the strut-wing
juncture. Fig. 31b shows the same configuration after
design optimization modifications have been made. As
can be seen the upper-wing-surface shock caused by
a propulsion interference effect has been removed in
Fig. 31b.

4. Concluding remarks

Numerical solution of nonlinear potential equations
for transonic cruise analysis and design has received
much attention within the CFD research community in
the last 20-30 years and has reached a mature level
of development in most application areas. This review
describes the key historical milestones in this develop-
mental process and provides a quantitative description
of existing nonlinear potential equation simulation capa-
bilities. Throughout the review computational results
with experimental comparisons are presented to highlight
key discussion points and to demonstrate method capa-
bilities.

Specific summarizing comments {rom this review are
presented as follows:

(1) To begin, this review presents a detailed description
of several nonlinear potential formulations with em-
phasis on the full potential equation. This includes
a discussion of derivation assumptions, boundary
conditions, transformation techniques and conserva-
tive versus nonconservative issues. These formula-
tions are all isentropic and irrotational. Nevertheless,
shock waves can be captured using a nonlinear po-
tential numerical algorithm with good agreement to
the more exact Euler equations providing the shock
waves are weak, Le.. the shock-normal component of
Mach number just upstream of a shock wave should
not exceed about 1.3.

(2) A variety of authors have demonstrated nonunique
solutions for the conservative full potential equation
for two-dimensional airfoil applications. The
nonuniqueness manifests itsell in the form of multiple
lift values for a single angle of attack. The nonunique-
ness only exists over a narrow range of freestream
Mach number for transonic flow conditions. It has
not been demonstrated for typical three-dimensional
computations in any Mach number range, and thus,
represents only an academic concern as the vast
majority of nonlinear potential flow applications are
three dimensional in nature.
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Fie. 31 Mach number contours on the wing upper surface in the vicinity of a nacelle showing numerical solutions before and after
optimization. taken from Jou et al. [3847. {a) Before design optimization. {b) After design optimization.

i3)

A simple and easy-to-include nonisentropic potential
flow correction procedure is available and has been
demonstrated in a variety of steady and unsteady
flow appheations. One variation of this correction
procedure, which requires an algorithm change only
at shock waves, typically corrects the shock wave's
strength and position producing good agreement
with corresponding Euler solutions. even for shocks
that violate the weak shock wave assumption. Other
vartations allow corrections for both entropy and
vorticity. In one application the nonisentropic cor-
rection procedure is used to eliminate the nonunique-
ness of the conservative full potential equation for
airfoil computations.

The mamn current application area for nonlinear po-
tential formulations is transonic cruise analysis for all
types of aerospace vehicles. especially transport air-
craft. Other important application areas include ro-
torcraft rotor analysis. including the effects of
a modeled rotor wake: transonic cruise design and:or
puimization especially the minimization of wing/fu-
i

O
sehive and wine fuselaee pvlon nacelle interferenc
seluge and wing fuselage pylon nacelle interference

N

effects: aeroelastic computations including the pre-
diction of flutter boundaries for transonic wings: and
analysis of forebody or slender wing ‘body configura-
tions for low supersonic flows. Many of these ap-
plications include a direct viscous correction proced-
ure utilizing either 1 momentum integral or a full
boundury layer equation approach.

There are many different algorithms in use for solv-
ing nonlinear potential equations. Generally. an al-
gorithm consists of a spatial discretization scheme.
which determines spatial accuracy. and an iteration
scheme. which determines steady-state convergence
efficiency (for steady problems) or time accuracy tfor
unsteady problems). Typical spatial discretization
schemes include an artificial viscosity, upwind fiux or
artificial density upwinding method cast in the frame-
work of a finite-difference, finite-volume or finite-
element approach. Iteration schemes include classical
relaxation methods. e.g.. SOR or SLOR. and more
recently developed schemes. e.g.. approximate factor-
ization. multigrid. minimum residual or conjugate
gradient methods. Space marching algorithms are




T.L. Holst } Progress in Aerospace Sciences 36 (2000) 1-6] S1

also used for problems with supersonic freestream
flows. In this type of algorithm the cross-flow plane
solution is obtained via a local iteration scheme that
resembles a two-dimensional transonic flow relax-
ation algorithm. Then the three-dimensional solution
is obtained without global iteration by marching
downstream. The outer bow shock is obtained via
a shock capturing or shock fitting scheme as the
algorithm is marched downstream. In one applica-
tion a hybrid approach is presented that utilizes
a marching scheme in supersonic flow regions
coupled with an embedded local relaxation scheme
for subsonic pockets of flow.

Nonlinear potential methods are used extensively in
design and optimization. With their relatively short
turnaround time on high-end desktop computers,
they are ideally suited for the repetitive parametric
variations required for the design environment.
Methods reviewed in this section include indirect,
inverse, gradient optimization and genetic optimiza-
tion methods. Inverse and gradient optimization
methods are both well established and utilized heav-
ily. Genetic optimization methods, which are quite
expensive, but theoretically work in noisy design
spaces with multiple local extrema, are just beginning
to be explored.

A variety of nonlinear potential methods have been
extensively developed for simulating the flow over
geometrically complex configurations. These methods
include various zonal-grid approaches (both patched
and chimera), unstructured approaches and Cartesian
unstructured approaches. The unstructured ap-
proaches are generally more accommodating in the
treatment of complex configurations, but are less com-
putationally efficient. Several complex geometry ap-
plications involving propulsion airframe integration
with propulsive effects are demonstrated.
Three-dimensional nonlinear potential solver CPU
times are difficult to quantify because there are many
contributing factors that may cause large variations.
A few of these include the grid density level, config-
uration complexity, numerical scheme variations (es-
pecially the iteration scheme) and the discretization
approach. However, most three-dimensional nonlin-
ear potential solver CPU times range from 1 min to
1h on current high-end computer systems. The
smaller run times typically involve coarse-grid struc-
tured approaches for simple configurations and the
larger run times involve fine-grid unstructured ap-
proaches for more complex configurations. Although
there are few quantitative head-to-head comparisons
between different formulations, the cost for perform-
ing three-dimensional transonic flow simulations
based on the full potential formulation is typically an
order of magnitude less than for a comparable simu-
lation using the Euler equations.

5. Recommendations for future work

Despite the advanced state of development for numer-
ical solutions of the full potential equation, there are

several areas that require improvements. First, geomet-
ric-handling computer software must be more flexible
and automated to a higher degree, minimizing (or even
eliminating) the amount of human intervention required
to move a new CAD geometry into the CFD environ-
ment. Of course, this is not just a full potential issue, but
an area of improvement required for all CFD formula-
tions. Advances in this area are largely paced by develop-
ments in surface-geometry representation and surface
grid generation. Nevertheless, enough research needs to
be conducted in the full potential arena so that new
geometric handling improvements are absorbed by the
full potential research community.

Full potential analysis and design methodologies need
to be better integrated into design environments, espe-
cially environments with a hierarchy of tools. The aero-
space vehicle designer should be able to choose between
more expensive Euler/Navier-Stokes formulations when
the physics dictates and the schedule and budget allow or
approximate but faster potential formulations when
schedule and budget dictate and the physics allows. This
process should be performed in a seamless fashion using
universal surface and volume grid generators and univer-
sal post processing software.

Optimization methodologies should be researched.
The genetic algorithm approach is extremely promising,
but largely undeveloped for aerodynamic optimization
problems. Obviously, this is because of its inherent ex-
pense and lack of knowledge for how to apply genetic
algorithm theory to aerodynamic and,or multi-discipline
design. The same situation existed for gradient-based
optimization methods fifteen years ago and now with
improvements in sensitivity derivative computation and
a 100-fold increase in computer power this technique is
widely accepted for aerodynamic design and optimiza-
tion. As design spaces become more detailed and include
more disciplines, the genetic optimization approach may
provide an attractive alternative for optimization. Utiliz-
ation of a fast full potential analysis capability in con-
junction with genetic optimization may provide an at-
tractive research approach to help develop genetic op-
timization methodologies.

Full potential analysis tools should be more com-
pletely integrated into the conceptual design environ-
ment. Because they are quantitative (for at least
cruise conditions) and fast, potential methods could
provide improved parametric aerodynamic results for
many conceptual configurations very efficiently. For
example, utilizing newer parallel computers a wing,fusel-
age parametric variation consisting of 1000 transonic
flow cases might require only about 10-15 min of CPU
time.
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Unsteady applications utilizing the full potential for-
mulation should be more completely developed, espe-
cially those applications that are untenable using more
complete formulations. A good example of this is the
helicopter blade-vortex-interaction application.

Hybrid applications involving the full potential formu-
lation coupled with other formulations is an important
area that needs additional research. For example, utiliz-
ation of the fast full potential formulation in outer re-
gions of flow to drive convergence and the Navier-Stokes
formulation near all surfaces to capture viscous effects
could produce accurate separated-flow physics at a frac-
tion of the cost.

The nonuniqueness problem associated with numer-
ical solutions of the conservative nonlinear potential
formulations for two-dimensional applications, which
appears to be formulational and not numerical in nature,
needs to be explained.
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